Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
THE MOSQUITOES OF
THE SOUTHEASTERN STATES

By
W. V. KING, Senior Entomologist
G. H. BRADLEY, Associate Entomologist
and
T. E. McNEEL, Assistant Entomologist
Division of Insects Affecting Man and Animals
Bureau of Entomology and Plant Quarantine

For sale by the Superintendent of Documents, Washington, D. C. Price 15 cents
THE MOSQUITOES OF THE SOUTHEASTERN STATES

By W. V. King, senior entomologist, G. H. Bradley, associate entomologist, and T. E. McNeel, assistant entomologist, Division of Insects Affecting Man and Animals, Bureau of Entomology and Plant Quarantine

CONTENTS

Introduction... 1
Genera and species found in the Southeastern States.. 2
Literature on mosquitoes... 4
General characteristics and habits of mosquitoes... 6
Collection and preservation of material... 9
Mosquito identification... 13
Mosquito control... 14
Mosquito surveys... 14
Engineering surveys... 18
Control of mosquito larvae.. 19
Control of adult mosquitoes... 22
Specific problems... 23
Notes on the genera and species—Continued.. 28
Genus Anopheles Meigen.. 28
Genus Culex Linnaeus... 37

INTRODUCTION

With the steadily increasing interest in mosquitoes and mosquito control in the Southeastern States, the need has arisen for a separate publication on the species of this region, bringing together information widely scattered through the literature and providing a convenient means for their identification. Such an account has therefore been prepared, which includes the species recorded from the nine States east of Texas and Oklahoma and south of the latitude of the Virginia-North Carolina border. The information has been compiled from various published sources, with additions and certain corrections from the writers’ own studies, which have been conducted principally in Louisiana and Florida. The purpose of the publication is to provide a reference work for collectors and others who work with the mosquitoes of this region. It contains notes on the habits of the species, their distribution, economic importance, and methods of control, together with descriptive keys for the identification of adults and larvae. Because fewer species are considered than in the more general reference works, an effort has been made to simplify the identification of adults by eliminating some of the more obscure generic characters in favor of others that can be made out with less difficulty. All the genera have therefore been included in a single

106619—30—1
synoptic table, and the species are separated on characters that have been found most useful. A brief generic key is added for convenient reference.

GENERALS AND SPECIES FOUND IN THE SOUTHEASTERN STATES

The mosquitoes found in the Southeastern States, together with their distribution and status as to prevalence and economic importance, are listed in table 1. The information has been compiled from records in the literature, principally the comprehensive works of Howard, Dyar, and Knab (68) and Dyar (40, 41), and from collections of the present writers. The 62 species (1 of which, *Anopheles crucians*, has 2 forms) for which we have definite records include representatives of each of the North American genera. The group is a fairly natural one, as most of the species are either restricted, in the United States, to the South or reach their greatest abundance there.

Table 1.—Genera and species of mosquitoes occurring in nine Southeastern States, and their relative prevalence

<table>
<thead>
<tr>
<th>Genus and species</th>
<th>Florida</th>
<th>Mississipp, Alabama, and Georgia</th>
<th>Louisiana</th>
<th>Arkansas and Tennessee</th>
<th>North Carolina and South Carolina</th>
<th>Prevalence and economic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aedes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aegypti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atlanticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrabilus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>biconvexus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dolosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dorosilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dupreei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gossebecki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impunctatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitchellae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nigromaculis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sollicitans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sticticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stimulans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>taeniorynchus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thibaulti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tormentor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triseriatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tristisitius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vexans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = important economic species; 2 = locally abundant and annoying, principally out of doors; 3 = common species, not very troublesome, some of them nonbiters; 4 = usually rare or of very restricted distribution.

1 Indicates definite records, ? that the identification given in the record is questionable, and P that the species probably occurs here although it has not been recorded.

1 New or unpublished records.

1 Italic numbers in parentheses refer to Literature Cited, p. 81.
Table 1.—Genera and species of mosquitoes occurring in nine Southeastern States, and their relative prevalence—Continued

<table>
<thead>
<tr>
<th>Genus and species</th>
<th>Occurrence recorded in—</th>
<th>Prevalence and economic status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Florida</td>
<td>Mississippi, Alabama, and Georgia</td>
</tr>
<tr>
<td>Anopheles:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>albinus</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>atropes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>barberi</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>crucians (fresh water)</td>
<td>+</td>
<td>+(Alabama)</td>
</tr>
<tr>
<td>crucians (salt water)</td>
<td>+</td>
<td>+(Alabama)</td>
</tr>
<tr>
<td>pseudopunctipennis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>punctipennis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>quadrimaculatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>walkeri</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Culex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apicalis</td>
<td>+</td>
<td>+(Alabama, Georgia)</td>
</tr>
<tr>
<td>corniger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erraticus</td>
<td>+</td>
<td>+(Georgia, Alabama)</td>
</tr>
<tr>
<td>nigrripalpus</td>
<td>+</td>
<td>+(Georgia, Alabama)</td>
</tr>
<tr>
<td>peccator</td>
<td>+</td>
<td>+(Georgia, Alabama)</td>
</tr>
<tr>
<td>pilosus</td>
<td>+</td>
<td>+(Georgia, Alabama)</td>
</tr>
<tr>
<td>pipiens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quinquefasciatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>reticulatus</td>
<td>+</td>
<td>+(Alabama, Georgia)</td>
</tr>
<tr>
<td>salinarius</td>
<td>+</td>
<td>+(Alabama, Georgia)</td>
</tr>
<tr>
<td>Dineocertes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cancer</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mansonia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porturbans</td>
<td>+</td>
<td>+(Alabama, Georgia)</td>
</tr>
<tr>
<td>titillans</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Megarhinus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rutulus</td>
<td>+</td>
<td>+(Georgia)</td>
</tr>
<tr>
<td>septentrionalis</td>
<td>+</td>
<td>+(Georgia)</td>
</tr>
<tr>
<td>Orthopodomyia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alba</td>
<td>+</td>
<td>+(Mississippi, Georgia)</td>
</tr>
<tr>
<td>Psorophora:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ciliata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>columbiae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>cyanescens</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>discolor</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ferox</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>horrida</td>
<td>+</td>
<td>+(Mississippi, Georgia)</td>
</tr>
<tr>
<td>howardi</td>
<td>+</td>
<td>+(Mississippi, Georgia)</td>
</tr>
<tr>
<td>psymaeae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>signipennis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>varipes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Theobaldia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inornata</td>
<td>+</td>
<td>+(Alabama, Mississippi)</td>
</tr>
<tr>
<td>melanura</td>
<td>+</td>
<td>+(Georgia, Alabama)</td>
</tr>
<tr>
<td>Uranotaenia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lowii</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>sapphirina</td>
<td>+</td>
<td>+(Mississippi, Alabama)</td>
</tr>
<tr>
<td>Wyeomyia:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>michellii</td>
<td>+</td>
<td>+(Alabama)</td>
</tr>
<tr>
<td>smithii</td>
<td>+</td>
<td>+(Alabama)</td>
</tr>
<tr>
<td>sandacei</td>
<td>+</td>
<td>+(Alabama)</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>45</td>
</tr>
</tbody>
</table>

1 New or unpublished records.
4 Exclusive of questionable identifications.
The following species are listed as being of economic importance:

Anopheles quadrimaculatus, the common malaria mosquito, transmits malaria and is a bad pest otherwise.

Aedes aegypti, the yellow-fever mosquito, transmits yellow fever and dengue fever and is a serious house pest.

Culex quinquefasciatus, the southern house mosquito, is a serious house pest. It transmits bird malaria and is an intermediate host for some of the filariae.

Aedes sollicitans, the salt-marsh mosquito, is the most important salt-marsh species generally in the Eastern and Southern States.

Aedes taeniorhynchus, the small, black salt-marsh mosquito, is another salt-marsh species of economic importance, especially in Florida.

Psorophora columbiae, the Florida glades mosquito, is an important freshwater species in southern Florida, and is also troublesome in other areas.

Mansonia perturbans, the common Mansonia, is a severe pest in areas where suitable breeding conditions occur.

(Some of these species may also transmit equine encephalomyelitis or other diseases.)

The woods mosquitoes, taken collectively, form a group that is also of considerable importance as a pest of man and animals. The principal ones in the Southeast are Aedes triseriatus, A. infirmatus, A. atlanticus, A. vexans, Psorophora ferox, and P. ciliata. Culex salinarius and C. restuans are important at times, and various other species, such as Psorophora cyanescens, A. canadensis, and Mansonia titillans, may become annoying in restricted localities.

Of the 47 species taken in Florida, 7 are tropical species, and 6 of these 7 have not been found elsewhere in the United States. Three (Culex corniger, Psorophora pygmaea, and Anopheles albimanus) have been recorded only once each on the extreme southern keys and apparently have not become established in the State. The other four (Wyeomyzia vanduzeei, W. mitchellii, Mansonia titillans, and Deinocerites cancer) are fairly common in southern Florida, but have not been found north of about latitude 29°. Ten species are recorded for Georgia, Alabama, and Mississippi which have not yet been found in Florida; some of these probably will be found there. The Louisiana records contribute two more species, Arkansas two, and North Carolina and Tennessee two. The last six species, from the border States, are incursions from the western and northern faunas; and it is probable that further collecting in these States, particularly near their western and northwestern boundaries, will increase the present known number of such incursions. However, in the northeastern part of the region at least, the Virginia records contain only one species (Aedes cantator Coq.) not found in the list. The questionable records for A. nigromaculatus and A. dorsalis in Louisiana are discussed in the text. A reported occurrence of Culex coronator Beyer in New Orleans (12) is believed to have been based on a misidentification, and the species is not included in the list.

LITERATURE ON MOSQUITOES

The literature on mosquitoes, especially that dealing with bionomics, methods of control, and disease transmission, has become exceedingly large, and the articles have appeared in widely scattered publications. General reference works covering the mosquitoes of the United States are, however, comparatively limited.

Of the references that include the southeastern species, the large monograph by Howard, Dyar, and Knab (68) contains detailed de-
scriptions, a large number of illustrations, and much information on mosquito bionomics and distribution. The systematic part of this work was later extensively revised and condensed by Dyar (41). A shorter article by Dyar (40) is also available, but the names of many of the species given therein have since been revised.

Matheson's handbook (90) is the most recent general reference work on North American mosquitoes. It contains brief descriptions of the genera and species and keys for their identification, numerous anatomical illustrations, an explanation of the taxonomic terms in use, and condensed accounts of mosquito biology, the relation of mosquitoes to human welfare, the problem of mosquito reduction, and instructions for their collection and study. Several of the southern species are not included in this work, and some of the descriptive matter and keys now need revision.

Edwards (43) has prepared a valuable catalog of the mosquitoes of the world, which contains, in addition to the list of species and synonyms, keys to the subfamilies, tribes, genera, and subgenera, and general information on distribution of the species.

The publications of the New Jersey Agricultural Experiment Station on the mosquitoes of that State (55, 112) have been utilized by southern workers, as they contain illustrations of a number of the species that occur in the South, as well as detailed information on mosquito bionomics and control. Komp's (82) guide to the identification of mosquitoes in the Southeastern States has been revised recently. A useful table for the identification of anopheline larvae has been prepared by Bradley (30).

Among other references on bionomics and control special mention should be made of Boyd's (16) work on malaria. Approximately half of this volume deals with the natural history of anophelines and their relation to the transmission of malaria. Hardenburg (54) deals with practical phases of mosquito eradication, and Le Prince and Orenstein (88) with mosquito control in Panama. Covell (55) has published a comprehensive review of the literature on the control of Anopheles which includes 570 references. Two series of short papers on the engineering aspect of mosquito control have been issued, one by the National Malaria Committee 2 and another by the Engineering News-Record (44). The United States Department of Agriculture has published a bulletin (67) on mosquito remedies and preventsives.

The serial publications that contain numerous original articles on mosquitoes include Proceedings of the National Malaria Committee, published annually in the Southern Medical Journal and now reprinted as symposia, Proceedings of the New Jersey Mosquito Extermination Association, the Public Health Service reports, the Public Health Service bulletins (which include the transactions of conferences of malaria field workers (115), Proceedings of the Florida Anti-Mosquito Association (mimeographed), and Insector Insectiae Menstruus. Articles on mosquitoes appear also in the American Journal of Tropical Medicine and in various other medical and entomological journals. The Review of Applied Entomology, Series B: Medical and Veterinary, is a serial publication almost indispensable to workers who wish to keep informed on the current mosquito literature of the world.

Mosquitoes are small two-winged flies belonging to the order Diptera, family Culicidae. In the subfamily Culicinae, which comprises the true mosquitoes, the wings, legs, and other parts of the body are more or less covered with scales, and the mouth parts are produced into an elongate proboscis, which is employed for piercing and blood-sucking by the females of most species. The males do not suck blood. The males can usually be distinguished from the females by their bushy antennae and by differences in the length or shape of the palpi (fig. 1). The size of different species of mosquitoes varies considerably (fig. 2).
There are four stages in the life cycle of a mosquito—the egg; the larva, wiggler, or wiggletail; the pupa or tumbler; and the adult winged insect or imago. The eggs are matured in batches of 50 or less to 200 or more, and several such batches may be laid by one female. Among the bloodsucking species, a blood meal is usually necessary for the production of eggs. When ovipositing, some species glue the eggs together into a raft or boat-shaped mass (fig. 3, A) which floats on the water, other species deposit the eggs singly on the water, and still others oviposit on the soil at the edge of the water or in moist depressions. The eggs of Anopheles (fig. 3, C) have lateral structures that keep them afloat. The incubation period is short in warm weather (usually 2 or 3 days), but in certain species, particularly Aedes and Psorophora, the eggs are able to withstand long periods of drying; in fact, they appear to require a certain amount of drying, and sometimes exposure to cold, before they will hatch.

The larvae of all mosquitoes are aquatic and most of them free swimming. Although possessing tracheal gills, the larvae of most species must come to the surface for air, and an elongated air tube or other modified apparatus is provided for obtaining air through the surface film. During the period of development, which lasts 4 to 10 or more days, the larval skin is shed four times, each successive instar showing a progressive increase in size. The larvae in the first two instars are very small and are easily recognized as immature. In the third instar the plumose hairs have fewer branches than in the fourth instar, and the immature Anopheles larvae usually have a collar of dark sclerotin around the base of the head.
The food of mosquito larvae consists of minute plants and animals and fragments of organic debris, which the larvae strain from the water by the action of their mouth parts. Barber (2, 3) reared the larvae on pure cultures of various organisms, and concluded that the presence of living food organisms was necessary for any considerable growth. Hinman (56) has suggested that materials in solution and colloids in suspension in the breeding waters may play a part in larval nutrition. A discussion of the food of anopheline larvae is given in the notes on *Anopheles quadrimaculatus*.

With the fourth molt the pupa appears. The pupal stage (fig. 4) is also aquatic and is a period of marked transformation, during which the adult insect is formed. The imago usually emerges after about 2 days.

The length of life of adult mosquitoes under natural conditions is difficult to determine, but for most of the southern species it is probably only a few weeks during the summer months. Some of the northern species of *Aedes* that emerge early in the spring apparently live much longer. Daily observations on abundance following the emergence of a large brood of certain species of *Anopheles* (122) and *Aedes* have shown a marked reduction in numbers within 2 weeks. The southern house mosquito probably lives longer than this, and the yellow-fever mosquito may live, on an average, a month or more, with a maximum of several months.

Figure 4.—Pupa of Culex pipiens. (Howard, Dyar, and Knab.)
In the North the females of Culex, Anopheles, and some other mosquitoes hibernate. True hibernation of Anopheles apparently does not occur in the South, as the females become active during warm periods and larvae are found in the breeding places (1, 7, 22, 50, 119). The same is true of some of the culicines in the warmer sections (37, 57). Aedes and Psorophora pass the winter in the egg stage, although some winter development of A. sollicitans occurs along the south Atlantic and Gulf coasts (52).

The piercing organs of the female mosquito consist of six elongated parts enclosed in a flexible sheath called the labium. When the mouth parts are inserted in the skin for bloodsucking, the sheath is bent backward in the middle like a bow. There are two pairs of slender cutting organs, the mandibles and the maxillae, and two additional organs called the hypopharynx and the labrum-epipharynx. The latter is channeled, and the last two organs, when pressed together, form a tube through which blood and other liquids are drawn. A very small separate duct is found in a ventral thickening of the hypopharynx, through which is injected the secretion from the salivary glands. This salivary secretion is responsible for the itching sensation caused by mosquito bites. Not all species of mosquitoes have bloodsucking females. In the genus Megarhinitus the proboscis of the female is not adapted for piercing, and some of the species in other genera are not known to take blood meals.

The mouth parts of the male are not adapted for piercing, and the males probably subsist on the nectar of flowers and fruit juices. Both the males and the females can be kept alive in the laboratory for considerable periods on fruit juices or sirups.

COLLECTION AND PRESERVATION OF MATERIAL

Anopheles larvae are usually found at the surface of the water among aquatic vegetation or floating debris and are collected by skimming through such material with a dipper or pan. A white-enamed dipper, having the handle lengthened by the insertion of a cane or smooth stick, makes a convenient implement for collecting larvae. Around emergent vegetation or logs the larvae may be drawn into the dipper by submerging one edge so that the water flows in rapidly as the dipper nears the obstruction. The larvae may be removed from the dipper to the collecting jar with a large-mouthed pipette provided with a rubber nipple (fig. 5), or a spoon may be used for this purpose. Wide-mouthed bottles (2 to 6 ounces) make convenient collecting jars.

Uranotaenia larvae and certain species of Culex, especially C. erraticus, are taken frequently with anophelines. Many other mosquito larvae, however, particularly those of Aedes and Psorophora, are more active and usually drop to the bottom of the pool as soon as disturbed. A quick plunge of the dipper is required to intercept these larvae, or they may be collected by sweeping through the water with a cloth collecting net or a fine-meshed wire strainer. Other kinds of mosquitoes, such as Mansonia, Wyeomyia, the tree-hole breeders, etc., require a special technique depending upon the character of the breeding place.
As soon as a collection is made, the jar should be numbered and a record kept of the locality, date, and conditions under which the larvae were found.

The larvae and pupae may be kept alive for rearing, or the large (fourth-instar) larvae may be preserved for identification in 70- to 80-percent alcohol or 10-percent commercial formalin. About 1 per-

Fig 5—Large-mouthed pipettes for collecting larvae and pupae, and chloroform killing tubes for collecting adults. The first of the two tubes is equipped with a paper funnel.

cent of glycerin should be added if the vials are to be stored. Specimens retain their form best if killed in hot water (not over 150°F.).

Permanent slide mounts of the larvae (or of the male genitalia) are conveniently made with Berles’s chloral-gum solution or one of its modifications. Gater’s (45) slight modification of this formula is as follows:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Grams</th>
<th>Milliliters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gum arabic (picked)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Distilled water</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Glucose sirup (10 g of glucose in 10 ml of water)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
The gum arabic is dissolved in the water, the action being hastened by keeping the water warm, and the other ingredients are added in the order given. The thick solution is then strained through three or four thicknesses of clean muslin; if clear lumps of the gum have been picked, the medium is then usually sufficiently cleared. Several weeks are required for the mounts to harden, but the hardening may be hastened by placing them in a warm incubator. The cover glasses may be sealed by ringing with cellulose cement. In cold weather white crystals may form in fresh preparations. To overcome this, the substitution of glycerin for the glucose sirup has been recommended. Larvae may be mounted in a chloral-gum medium direct from water or from a preservative after rinsing in water.

Suitable balsam mounts of entire larvae require somewhat prolonged dehydration and hardening in alcohol.

For taxonomic study or for identification of species difficult to determine, it is frequently desirable to have both the larval skin and the adult of the same individual. For such rearings a nearly mature larva is isolated in a separate dish, and when pupation occurs the larval skin is removed with a pipette, spread out carefully on a slide, and a mount prepared in the chloral-gum medium. The dish or vial containing the pupa should be covered with cloth or a larger dish or plugged with cotton, and after the adult emerges sufficient time (about 24 hours) should be allowed for the sclerotin to become thoroughly hardened, before it is killed. The specimen is then placed in the collection with a number corresponding to that given the larval skin. If a balsam mount of the larval skin is desired, the specimen may be cleared on the slide with carbol-xylol or other medium.

Adult mosquitoes are usually collected while they are biting or resting in secluded corners inside or underneath buildings, in tree holes, etc. A chloroform killing tube (fig. 5) is convenient for this purpose. It may be prepared by placing a half-inch layer of cut rubber bands in the bottom of a large shell vial or test tube, saturating the rubber with chloroform, and covering with a plug of crumpled paper and a circle of stiff paper or a layer of cotton. The writers prefer a shell vial seven-eighths of an inch in diameter and about 5 inches long. When the tubes are kept tightly corked, the rubber retains the chloroform for some time. As moisture is liable to condense on the inside of the tubes, the dead mosquitoes should not be left in them long.

A pill box, with a thin layer of cotton pressed down into the bottom and sides, is convenient for holding or shipping the specimens. The box should not contain so much cotton that the specimens will come in contact with the lid, and if more than a wisp is used its weight will cause it to shift about in the box during shipment. Cotton should not be placed on top of the specimens. Specimens that have been moistened, crushed, or rubbed are usually unsatisfactory for identification.

The suction type of light trap, as developed by New Jersey workers, is being used extensively for obtaining samples of the mosquito fauna of an area and records of the relative abundance of different species, particularly in connection with control operations. The specimens captured are more or less damaged, however, and usually unsuitable
for the permanent collection. The upright model of this trap (fig. 6) is described by Mulhern (106).

Adult specimens that are to be retained in the permanent collection should be mounted and pinned into a Schmitt box or similar tight insect box having a bottom lining of sheet cork or balsa wood. Freshly killed specimens may be mounted on minuten pins, and dry specimens on paper points cut from stiff paper (fig. 7). In using the paper mount, an entomological pin is passed through the base of the narrow paper triangle and a small drop of cement is dabbed on the tip of the paper. The paper is then pressed gently onto the side of the thorax of the mosquito, with the tip directed toward the mesonotum. Care should be taken not to smear the legs or wings with the cement. For uniformity the points are usually stuck onto the left side of the specimen. A cellulose cement is preferable to the shellac formerly employed; it may be purchased at hardware stores in small tubes, or it may be prepared by dissolving celluloid in amyl acetate (known also as pear oil or banana oil). Because of the volatility of the amyl acetate the stock of cement must be thinned frequently. In using the minuten-pin mount, the small pin is stuck into a small square or rectangular piece of cork, through which is also passed a larger pin (fig. 7). The tip of the small pin is then thrust through the thorax of the mosquito, usually from between the coxae toward the back. The tip of the pin should not protrude through the mesonotum. Very small, dry specimens may be stuck on the side of the minuten-pin point with a drop of cement, instead of using the paper point. The No. 3 entomological pin is probably the best general size for use with both paper-point and minuten-pin mounts.

Great care must be taken to protect the stored specimens from insect pests, and for this purpose flake naphthalene and paradichloro-
benzene are most frequently used. The material may be sprinkled in the box or placed in a perforated container fastened in one corner of the box. Specimens that are to be kept temporarily in pill boxes may be protected by sprinkling a little flake naphthalene on the bottom of the box and covering this with a thin layer of cotton before introducing the mosquitoes. For longer storage the pill boxes may be kept in a larger box containing naphthalene or paradichlorobenzene, which must be renewed occasionally.

MOSQUITO IDENTIFICATION

The identification of the different species requires a knowledge of mosquito anatomy, as the distinguishing characters consist of variations, frequently very slight, in shape, size, coloration, or scaling of
the different parts of the body. Illustrations are provided herein to show the names and locations of the principal parts that are utilized in this connection, and the diagnostic keys have been made as simple and as nearly self-explanatory as accuracy will permit.

For the examination of the external characters of adult mosquitoes, a binocular dissecting microscope is necessary for satisfactory work. It should be provided with objectives and oculars giving magnifications up to about $85\times$. (Higher magnifications are sometimes needed.) With high magnifications a spotlight or other source of bright illumination is required. For the examination of larvae and slide mounts of male terminalia, a compound microscope is needed and should be equipped for magnifications of about 100 and $400\times$. The oil-immersion objective is not ordinarily required, except for advanced work on the male terminalia. For field work and for provisional identification of adults, a good hand lens giving a magnification of 10 to $15\times$ is very useful. In fact, after one has become thoroughly familiar with the species of a locality, he will be able to identify many of them with the hand lens, and some of them even with the naked eye.

Workers inexperienced in systematic work with mosquitoes should have on hand, for comparative study, at least a small series of correctly identified species, which can be obtained by sending material to a specialist with the request that named specimens be returned. Until one has become thoroughly familiar with the species, the material should in any case be forwarded to an authority for a check on the identifications when questions of control or information on habits are involved, since misidentifications are liable to result in serious difficulties. Identifications may be obtained through the Bureau of Entomology and Plant Quarantine and in some of the State universities and experiment stations.

MOSQUITO CONTROL

Antimosquito work may be undertaken either as a means of controlling mosquito-borne diseases or purely to eliminate annoyance. Although the former is regarded as the more important, the fact should not be overlooked that mosquito annoyance not only is a detriment to health and happiness but results in a direct economic loss by reduction of property values, injury to livestock, expense of protective measures, and in other ways. These losses frequently are much greater than the cost of mosquito control.

Nearly everyone is familiar with the efforts made to eliminate mosquito-breeding places and with the use of larvicides in antimosquito work. The practical phases of the problem, however, form a large specialized subject, and a general summary only will be given here, with reference to underlying principles and to the practices and materials that have become more or less standardized or are of recent development.

MOSQUITO SURVEYS

Mosquitoes have extremely diverse breeding habits, particularly in respect to the type of place selected for oviposition. Because of this diversity the species to be dealt with and their individual habits must be known before control measures can be applied intelligently.
If the work is undertaken for the control of one of the common diseases, such as malaria or dengue fever, the presence of the disease itself, in the Southern States at least, indicates a particular species of mosquito. A study of the distribution of human cases of the disease serves to localize the problem, and a mosquito survey is undertaken to aid in developing the plan of procedure. At the same time the possibilities of including control measures against purely obnoxious species that may be present should not be overlooked. Where relief from annoyance is the main object, a thorough species survey is necessary to determine what the problem is and the relative importance of the different kinds, since more than one species is usually involved. Even in coastal areas, where it is known that the salt-marsh species are the principal culprits, it is still highly important to know whether fresh-water breeders are sufficiently numerous to require consideration.

The surveys are begun by the collection and identification of both adult and larval specimens. During an outbreak of mosquitoes the species involved can be determined quickly by collecting adults from various parts of the affected area. In localities where mosquitoes are present more or less continuously, or where outbreaks are of frequent recurrence, collections should be repeated often enough for the relative annual abundance of the different species to be determined. At the same time information should be accumulated as to the breeding places of the common species, the topography of the area, and the extent of the control problem. A year should ordinarily be regarded as the minimum time for such preliminary studies, since mosquito abundance varies greatly with the seasons. Several years are required to obtain reliable averages as to normal abundance. Although control operations usually can be begun before such an extensive survey is completed, the practice of beginning such work with inadequate information is highly wasteful and may result in complete loss of public confidence in a worthwhile project and possibly cause its abandonment. An important item in the annual budget for financing the control operations should be the provision for continuing the systematic collection and identification of specimens. This will furnish invaluable information as to seasonal changes in the mosquito problem and outbreaks from overlooked or distant breeding areas, and is indispensable in measuring the results accomplished.

General methods of collecting mosquitoes have been discussed in a preceding section. Some of the special methods employed for obtaining data necessary in connection with surveys and control operations are described in the following paragraphs.

BITING RECORDS

Collecting mosquitoes while they are biting is the simplest and most direct method of determining the proportions of the different blood-sucking species. Such collections are usually made with a chloroform tube or other type of killing bottle. For data on comparative abundance in different parts of the area or at different times of the year, stations are selected and collections made for equal periods and under conditions as nearly uniform as possible. In obtaining such records the writers have adopted the procedure of sitting on a box or
stool at the selected place, with the trouser legs rolled to the knee. After a minute or so has been allowed for the mosquitoes to accumulate, they are collected as they alight, for a period of 10 or 15 minutes (78). If the collecting is done after dark, a flashlight is necessary. Two 15-minute collecting periods or three 10-minute periods may be totaled and multiplied by 2 for the hourly rate. Collections made during the first flight period (just at dark) should not be averaged with later collections, as the numbers are usually much larger at that time.

When the mosquitoes are numerous, the numbers caught can be increased considerably by placing a short paper funnel, or guard, in the mouth of the collecting tube (fig. 5), since this permits the collector to move to the next specimen without waiting for the first one to succumb to the chloroform fumes. The guards are useful otherwise in conserving the strength of the chloroform and in preventing the loss of specimens when the mouth of the tube is turned downward.

When collecting after dark, the writers have taken an average of 10 mosquitoes per minute, or 600 per hour, with a tube of this sort. If the mosquitoes are much more numerous than this, the discomfort of collecting is so great that it is considered sufficient to record abundance as 600+, or other observed rate, per hour. When the collecting is to be done at different places by two or more persons, preliminary collections should be made at one place to determine the relative attractiveness and dexterity of the different collectors, as much variation has been found in these respects.

HAND COLLECTIONS OR COUNTS OF RESTING MOSQUITOES

Some species can be obtained by daytime collecting in dark corners and other places where the adults (including the males) spend the daylight hours. This is an excellent method of obtaining comparative data on adult densities of Anopheles, especially those species found in the United States, since they fly into a shelter at daybreak and remain quietly there throughout the day. For these species also this method is much safer than the biting method, which is attended with danger of malaria transmission.

 Favorable daytime resting places for Anopheles are found underneath buildings that are raised 2 or 3 feet from the ground and inside tightly boarded outbuildings or similar locations. In making the surveys a series of stations well distributed over the area under observation are selected, and weekly, biweekly, or monthly collections are made (65, 72). At each location the most favorable resting place should be selected after examination of all the buildings on the premises. When the surveys are purely for comparative purposes, the collecting station does not always need to be an entire building, if it is found that one part is more favorable than another or that parts of the building are not conveniently accessible. Where the resting surface is fairly smooth and unobstructed, a well-trained and reliable collector, with the aid of a flashlight, can obtain satisfactory counts of the resting mosquitoes in much less time than would be required for collecting the specimens in killing bottles. The sex can be determined and in most cases the species identified on sight. Collections over a definite period (10 or 15 minutes) have been used as
an index of density, but they may be unreliable because of variations in the rate of collection under different conditions as well as in the mechanical limitations to the numbers of mosquitoes that can be collected in a given time.

TRAP COLLECTIONS

For most species the suction type of light trap (fig. 6) is very useful for obtaining samples of the mosquito population, for records of comparative abundance, and, in control areas, for immediate information on the occurrence of outbreaks. In connection with control work the traps are placed at strategic places throughout the area and are usually operated every night. For other purposes the traps may be run on a schedule of one or more nights each week. The traps should be hung in an open space with the light itself 5 or 6 feet from the ground, and they should not be placed in the immediate vicinity of a street light.

The number of mosquitoes caught per night frequently runs into the hundreds or even thousands, and many other kinds of insects are found in the killing bottles. Under these conditions the task of separating and identifying the material is considerable, especially when the specimens are badly damaged or wet. Species not taken while biting appear in the light-trap collections, and it has been found that the different bloodsucking species are not attracted to the lights equally. Over a series of nights the writers' trap-collection records have shown more variation than the biting records, which, of course, are the more accurate index of annoyance. From a large series of trap collections made in Florida only an occasional specimen of *Aedes aegypti* has been obtained, and the numbers of *Oulex quinquefasciatus* and *O. nigripalpus* appear to be very small in comparison with the amount of breeding occurring in the neighborhood of the traps. This also seems to be true to some extent of *Anopheles quadrimaculatus*. The trap records, therefore, cannot be relied on as an index of density for these species.

Boxes of various sizes and shapes, having the inside painted black or lined with black cloth, have been employed to attract mosquitoes, particularly anophelines and the house *Oulex*, as a daytime resting place. They are placed in corners of rooms or in sheltered places outside the houses. In the morning, after the mosquitoes have entered, the open end of the box is covered and the specimens are killed, for counting, by fumigation or by placing the box in the sun.

Animal-baited traps have been used for collecting mosquitoes and, in the Tropics at least, have been employed for determining densities of anopheline species that do not remain in accessible shelters during the daytime. A number of such traps have been described.

COLLECTIONS OF LARVAE

The collecting of larvae in connection with mosquito-control surveys has for its main purpose the locating of breeding places and the determination of their importance. Some information may be obtained as to the comparative abundance of different species from the identification of a large series of collections. Rough estimates of the relative abundance of a species can be obtained by counting
the larvae per dip in a series of dips. This method is utilized principally in connection with anopheline surveys. The relative importance of the area in mosquito production can be expressed numerically by multiplying the average number per dip by a factor representing the extent of the breeding area (size times percentage of breeding surface). The productivity of a breeding place per unit of surface can also be determined by the use of cloth nets or screen cages placed over the water (25).

Breeding places may be divided into two general classes, permanent and temporary. The two classes frequently intergrade, however, and the status of a given area may change over a period of time. Anopheles and Culex occur typically in the permanent breeding places, whereas most Aedes and Psorophora are found in the temporary collections of water produced by rainfall, floodwaters, or high tides. The status of the breeding places, particularly the permanent ones, as to productivity may change greatly during the course of a season or from year to year, owing to changes in the amount of aquatic growth or flotage, the abundance of natural enemies, and other causes.

The importance of temporary breeding places of Aedes and Psorophora is frequently very difficult to determine, because considerable time may elapse between broods. One may visit suspected areas repeatedly without finding larvae, and such areas must be classified as potential breeding places until more definite evidence is obtained. The type of vegetation, especially in salt marshes, is often an indicator of the suitability of breeding conditions. Breeding occurs on the parts of the marsh that are above the normal daily tidal range, and the elevations are indicated by the type of plant growth, since many of the plant species are restricted rather sharply by the height of the water table and the frequency of tidal coverage. More definite information on suspected breeding areas can sometimes be obtained from samples of sod taken from dry depressions by scooping off a thin layer of topsoil with a small shovel. Samples from different parts of the area are placed in containers and covered with water to cause hatching of the eggs, which may begin within 15 minutes and continue for several hours. Glass containers are preferable, as the small larvae are more easily seen when these containers are held against the light. If the sods are very moist at the time of collection, drying in the air for a week or so may be necessary to induce hatching of the eggs.

ENGINEERING SURVEYS

During a mosquito survey much information will be accumulated which will be valuable in determining the feasibility of an anti-mosquito project and the best methods to be employed in handling specific problems. Where the malaria or the salt-marsh mosquito is to be controlled, an engineering survey is then undertaken to lay out the detailed plan of ditching and other operations, and to determine the approximate costs. Whether the local situation can be handled successfully within the means at hand, or at a cost commensurate with the probable benefits, is one of the first questions to be decided. Matters of the legality of the proposed work (including jurisdiction over the area involved), the probability of obtaining necessary easements on private property, etc., must also be considered.
Good maps are, of course, essential, and should be available both in small scale for use as key maps and in large scale for showing in detail the breeding places, ditching lay-outs, and natural topographic features. The different areas and the individual breeding places can then be given names or numbers for convenient reference to the mosquito-collection and engineering notes. Aerial photographic maps of rural or marsh areas are extremely valuable, as they show the bodies of water and the types of vegetation. A note-card system should be arranged and complete records kept of all inspection and survey data.

For breeding-place or other preliminary surveys when elevations or exact locations are not required, the directions given by Hulse (69) for preparing field maps in public-health work based on methods employed in the military service are very useful.

CONTROL OF MOSQUITO LARVAE

Mosquito-control measures are usually directed against the larvae, since this seems to be the most vulnerable stage in their life cycle.

ELIMINATION OF BREEDING PLACES

Where at all feasible, efforts are made to eliminate the breeding places permanently by filling, drainage, or sanitation.

Filling is frequently an economical method and gives permanent relief when the fills are so graded as to leave no water-holding depressions. Large hydraulic fills, however, usually show shrinkage or surface cracks upon drying and may require one or more regradings to prevent mosquito breeding.

Drainage undoubtedly has the widest application of the various antilarval measures, especially in the control of the malaria carriers and the salt-marsh species. The drainage of swamplands in the United States has done much to reduce the malarious area and at the same time has made the land suitable for agriculture. Drainage, or ditching, purely for mosquito control, however, should be looked upon as distinct from agricultural drainage, since it is directed mainly toward the elimination of surface water during the time required for larval development, or to aid in biological control. Comprehensive drainage plans, especially for malaria control, should be prepared with the aid of trained engineers.

Two phases of the drainage problem in mosquito control to which attention has been called in recent years are its possible effects upon wildlife and upon soil conservation. Through cooperative biological studies efforts are being made to determine what measures may be applied to large swamp areas, particularly those not close to centers of population, which will disturb as little as possible the natural breeding and feeding grounds of aquatic wild fowl and other desirable animal life without sacrificing the success of the mosquito-control project. Specialists in soil conservation have also called attention to the adverse effects of the drainage of natural upland storage basins, the cleaning of stream channels, and the "brushing" of stream banks, all of which increase the rapidity of run-off of floodwater with consequent erosion that may cause serious damage to agricultural lands. Such erosion is said to cause frequently a gradual
widening of the flood plain and silting-up of downstream areas, which may create mosquito-producing areas as serious as those remedied.

Such factors as these must be considered in planning mosquito-control programs, and they emphasize the need of obtaining advice from competent specialists when making the preliminary surveys. The impoundage of water rather than drainage may be employed successfully in many cases, both in salt-water and fresh-water areas, since an open pond with clean margins and containing mosquito-destroying fish is not favorable for mosquito breeding (116). (Pl. 3.) Where the sacrifice of wildlife habitat appears necessary to accomplish effective mosquito control, a decision must be made as to the greater benefit to be derived.

Sanitation, as applied to mosquito control, includes such measures as the elimination of artificial and other breeding places of the domestic mosquitoes. It also involves the treatment of permanent bodies of water by the removal of aquatic vegetation and other protective harborage for the larvae, to make them unfavorable for mosquito development.

LARVICIDES

Various kinds of larvicides are employed where permanent methods of control are not feasible. Although there are many chemicals that will poison the larvae rather easily, the number of materials that are utilized in practical work is comparatively small.

Petroleum oils have been used extensively and are effective against nearly all economic species. They act as contact poisons and kill the larvae or pupae by entering the breathing tubes. The lighter and more volatile oils, such as gasoline and kerosene, are the more toxic, whereas heavy oils are more lasting. Various mixtures of heavy and light oils have therefore been employed. Light distilled fuel oil (No. 2) is recommended for general use, since it is of fairly uniform quality, easily handled in large or small spraying equipment, and is economical in cost. Since fuel oil varies somewhat in toxicity according to the type of crude petroleum from which it is derived, preliminary tests of its effectiveness against mosquito larvae should be made before it is purchased in large quantities. The addition of about 1 percent of castor oil or crude cresol has been recommended as a means of increasing the spreading power of the oil.

Paris green is highly toxic as a stomach poison to mosquito larvae (4) and is now used extensively in the control of anopheline mosquitoes. It is effective in very small quantities and, since these larvae feed at the surface of the water, the material can be applied economically as a dust in admixture with an inert diluent. Recent experiments by King and McNeel (80) have shown that this arsenical also is effective against the salt-marsh species and some of the other subsurface-feeding larvae, including Psorophora columbicae and Culex quinquefasciatus, when mixed with water and sprayed on the breeding places from a sprinkling can.

Tests with calcium arsenite suggest that a much cheaper arsenical than paris green may be available as a larvicide. This arsenical should not be confused with calcium arsenate, a common insecticide for plant-feeding insects, most samples of which have had a low toxicity for mosquito larvae,
Soap emulsions of pyrethrum extract in kerosene oil have been developed by workers in New Jersey (47) and are employed successfully as mosquito larvicides. The cost is low, and the use of pyrethrum greatly reduces the quantity of oil required, which is a very desirable feature under some conditions. Two formulas for the preparation of the emulsion, adapted from those given by Ginsburg (47), are as follows:

Against fresh-water larvae.—Two gallons of kerosene containing pyrethrum extract equivalent to 1 pound of pyrethrum flowers per gallon, and 1 gallon of water containing 8 to 10 ounces of liquid 40-percent potash soap.

Against salt-water or fresh-water larvae.—Two gallons of kerosene containing pyrethrum extract as above plus 2 ounces of defoamer, and 1 gallon of water containing 2 ounces of sodium lauryl sulphate.

With both formulas the emulsifying agent is dissolved in the water and the oil containing pyrethrum extract slowly added with constant mixing (in a container with agitators or by pumping the mixture vigorously back into itself) until a creamy emulsion is obtained. After the foam has settled, 1 part of this stock solution is mixed with 9 parts of water, and the diluted mixture is sprayed onto the breeding places at the rate of about 50 gallons per acre. The stock emulsion can be prepared in large quantities by mixing in the tank of a power sprayer. The pyrethrum extract is usually purchased in a concentrated form, 20 or 40 pounds of the flowers per gallon, and diluted with oil as necessary. In making the stock solution according to the above formula, use 6.4 fluid ounces (189 cc) of the 20:1 extract for each gallon of stock solution or half that quantity of the 40:1 extract.

The sodium lauryl sulphate and the defoamer can be obtained on the market, or the defoamer can be prepared by mixing equal parts of fuel oil and wool grease. The prepared stock emulsion can also be purchased.

NATURAL ENEMIES OF LARVAE

Various kinds of insects and other animals prey upon mosquito larvae and undoubtedly destroy large numbers. Of the many natural enemies, however, in most cases only the small larva-eating fishes have been found practical for use in control. In the Southern States the most important of these is the top-water minnow (Gambusia patruelis (affinis)), which occurs in both fresh and brackish water. These fish are most effective against subsurface-feeding larvae and in places where the larvae are not protected by aquatic vegetation. They have been used to stock ornamental pools and other isolated bodies of water. They are highly useful in permanent ponds and in the salt marshes. The International Health Board of the Rockefeller Foundation (108) has prepared a review of the literature on the use of fish for mosquito control, and Hinman (59, 60) has given numerous references on other predators of mosquitoes.

Different aquatic plants have been claimed to be of value in eliminating mosquito breeding. One species of Chara (C. fragilis) appears to exert a deterrent effect, although certain other species of this genus have been found to be innocuous. The bladderworts (Utricularia) capture and destroy small aquatic animals, including mosquito larvae. Duckweed (Lemna) and similar floating plants (Azolla and Wolfia) may form such dense mats on the water sur-
face that they act as a mechanical barrier to mosquito breeding, al-
though Anopheles and Culex larvae are found associated in abund-
ance with them when the growth is scattered. Water hyacinths (Piaropus) may also act in somewhat the same way. Matheson (91) gives a review of the literature on this subject.

CONTROL OF ADULT MOSQUITOES

Screens, bed nets, repellents, contact sprays, smudges, and fumi-
gants are all employed for protection against mosquito annoyance.

In the screening of houses galvanized or copper screens are usually
employed, and the 16-mesh screen has come to be a standard size
for this purpose. Copper (or bronze) screens, although higher in
first cost, are the more durable, especially in the vicinity of salt
water. Monel-metal screens have also been recommended in such
situations. To be effective the screening must be carefully done
and special attention paid to the fitting of door and window frames,
as mosquitoes will find entrance through very small openings. Bed
nets made of open-mesh cloth are used extensively in some localities
in the absence of, or to supplement, screening. They are frequently
employed for protection of individuals, especially in malarious or
salt-marsh areas. To be of value they should be in good repair and
carefully adjusted.

Kerosene extract of pyrethrum (insect powder) is very effective
as a contact spray and is useful in destroying mosquitoes that have
gained entrance to screened houses. Most of the commercial fly
sprays contain this extract. Home-made sprays may be prepared by
soaking 1 pound of the ground pyrethrum flowers in a gallon of
kerosene for 24 hours or longer, and then pouring off the super-
natant fluid for use. Water-white kerosene is generally used for this
purpose to avoid staining of the clothing or walls. The pyrethrum
spray is also effective temporarily as a mosquito repellent when
sprayed on the ankles or the clothing. For application on the skin,
a mixture of a concentrated extract with a nonirritating oil such as
petrolatum or liquid vaseline may be used. Oil of citronella and
other essential oils have long been used as temporary repellents. One
formula, recommended by Howard and Bishopp (67), consists of 1
part of oil of cedar, 2 parts of citronella, and 2 parts of spirits of
camphor.

The dry pyrethrum powder is sometimes burned as a fumigant
for destroying mosquitoes in closed rooms. It is also used as a repel-
lent smudge, and the writers have seen it employed with good results
in a large screened camp into which swarms of salt-marsh mos-
quitos gained entrance with each opening of the door. In the open
room the fumes were not strong enough to be objectionable to the
persons present but were sufficiently toxic to incapacitate the insects.
To make the smudge the powder is mounded on a plate or other flat
dish and ignited at the top with the aid of a little alcohol. One or
more dishes may be used, depending on the size of the room. Grass
or wood smudges provide some relief to livestock in open fields and
stables during severe outbreaks of mosquitoes. It seems probable
that the pyrethrum smudge would be much more effective than the
wood smoke for use in the stables.
Recent work in New Jersey (48, 49, 117) has shown that outdoor gatherings of people can be protected more or less from mosquito annoyance by a thorough spraying of the grounds and surrounding vegetation with a diluted emulsion of pyrethrum extract (similar to the formula given for pyrethrum larvicide). The spray is applied under sufficient pressure to produce a fine mist. Successful results were reported from tests in which areas as small as 1,000 square feet were sprayed, but Vannote (117) indicated that a marginal zone approximately 100 feet wide should be treated in addition to the area to be protected. In experiments conducted in Florida by the present writers (78), effective results were not obtainable with the species Mansonia perturbans on areas 106 and 150 feet in diameter (0.2 and 0.4 acre) when the ground was covered with only short vegetation, although marked reductions had occurred from the spraying in the smaller area before the grass and weeds had been cut. It was indicated that the method would not be feasible, against this species at least, for the protection of lawn parties or similar small gatherings.

The beneficial effects of various plants or trees in repelling mosquitoes have been reported, but apparently none of the reports have been substantiated when carefully investigated. (See Moznette (105) for one such instance.) Different plants have also been blamed for attracting mosquitoes to houses. Although no plants with such properties are definitely known, it is true that dense vegetation is attractive to many species of mosquitoes as a harboring place. This is probably due to the moisture and shade afforded by the vegetation, as well as protection from winds. Some of the woods mosquitoes are also known to bite commonly in shady places during the daytime but will not fly into the open for a blood meal.

Adult mosquitoes have various natural enemies, such as certain birds, bats, and predacious insects, which prey upon them along with other insects. The erection of bat roosts in mosquito-infested areas has been urged as a means of control, but observations in places where bats are very numerous have shown that they have little effect in reducing the mosquito population (64).

SPECIFIC PROBLEMS

A few notes are given below in regard to problems of control of some of the more important species.

THE COMMON MALARIA MOSQUITO (ANOPHELES QUADRIMACULATUS)

This species develops principally in permanent bodies of fresh water containing aquatic vegetation or floating debris (pls. 1-3). Because of the breeding habits of this mosquito, malaria in the Southern States is largely a disease of rural communities and small towns. Malaria control in this region usually consists of measures against *Anopheles quadrimaculatus*, the first essential of which is the permanent elimination of the low swampy places by filling or drainage. This species does not ordinarily fly long distances, and the control of the breeding places within a mile of a populated area is thought usually to be effective (5, 46, 86, 87). Ditches and the margins of the deeper ponds and lakes should be kept free of vegetation, and breeding in shallow ponds full of aquatic growths or in the beds of occasionally flowing streams can sometimes be controlled econom-
cally by impounding the water with dams to a depth sufficient to overcome the aquatic vegetation (pl. 3, B). Periodic fluctuation of the water level in such impounded areas is very important in reducing the marginal growth and flotage. The impoundage of large bodies of water for hydroelectric or other purposes, however, has introduced serious problems in malaria control, and special legislation has been enacted by Southern States covering the measures that must be taken to prevent breeding of anopheline mosquitoes in such projects. The Tennessee Valley Authority has found it necessary to provide for an extensive program of Anopheles control in the impounded areas on the Tennessee River.

As previously mentioned, in planning extensive drainage operations careful consideration should be given to problems of wildlife and soil conservation.

The use of chemical larvicides, such as oil and paris green, is required for treating breeding areas that cannot be eliminated, and in many places, owing to local conditions, this constitutes the main part of the control program. Paris green dusted on the water will destroy anopheline larvae because of their habit of feeding at the surface and ingesting all small particles that lie on the surface film. It is effective in such minute quantities that its use on ground waters is not dangerous to animals. One or two percent of paris green is used with an inert diluent such as fine road dust, hydrated lime, pulverized soapstone, or other available earths. It is applied with various types of hand dusters or, for larger operations, with power dusters mounted in boats. Under special conditions airplanes can be used advantageously for treating large breeding areas (34, 75, 76, 121) (pl. 1, B). In airplane dusting the proportion of paris green is increased to 10 to 50 percent. As previously mentioned, calcium arsenite, when produced commercially, may provide a cheap substitute for paris green. The applications of both arsenicals and light oils must be repeated at about weekly intervals throughout the breeding season, since these materials remain effective for only a short period.

An adult anopheline density index (72), obtained by periodic counts of the numbers present in favorable daytime resting places (inside and underneath dwellings, in stables, outhouses, etc.), is highly useful in measuring the effectiveness of the control operations.

THE DOMESTIC MOSQUITOES (AEDES AEGYPTI AND CULEX QUINQUEFASCIATUS)

Urban antimosquito campaigns usually combine control measures against the yellow-fever and the southern house mosquitoes, and, although their practical control offers no insurmountable difficulties, continuous efforts and expense are required to keep the numbers reduced. These species differ considerably in breeding habits, especially as regards polluted waters and ground pools, although rain barrels and similar water containers are important breeding places for both. Where the water in these receptacles is required for domestic purposes, the barrels should be kept tightly covered and the water drawn from a spigot at the bottom; otherwise they require weekly emptying or treatment with oil, either of which is likely to be neglected. When larvae are present, spraying the surface with a small amount of kerosene or a pyrethrum fly spray is ef-
A, *Anopheles* breeding pool in a cypress swamp; B, airplane dusting of paris green for *Anopheles* control in a swamp lake in Louisiana. The lake has a dense marginal growth of water chinquapin or American lotus (*Nelumbo lutea*), with waterlilies (*Nymphaea* sp.) and other aquatic vegetation in the middle.
A and B, Water conditions favorable for breeding of *Anopheles quadrimaculatus.*
A, A seasonal bayou overgrown with willows; B, a portion of the same bayou after clearing and impounding to eliminate *Anopheles* breeding.
Mosquito-control ditches in salt-marsh areas: A, In North Carolina; B, in Florida, pickleweed in foreground, mangrove trees in background.
fective and imparts little odor to the water. Fire barrels may be treated by adding borax or common salt at the rate of 4 or 5 pounds per 50 gallons of water. This will prevent larval development as long as the strength of the solution is maintained. Tubs and other casual water containers left in the yard should be turned upside down when not in use, and worn-out equipment should be disposed of.

With the yellow-fever mosquito (*Aedes aegypti*) the smaller water containers, such as old cans, bottles, flower vases, and obstructed eave troughs, are important, and a campaign against this species should begin with a clean-up of yards and vacant lots. During the dengue-fever control work in Florida in 1934 a large proportion of the discarded automobile casings left in the open were found to contain water with *aegypti* larvae, and many breeding places were found in automobile-wrecking yards. Toilet bowls and flush tanks in vacant houses and apartments require systematic attention, and collections of water in the basements of buildings should not be overlooked. The adults of this species do not fly far, and when they become troublesome at any point the breeding source can usually be found on the premises or nearby. An essential part of any *aegypti* control program is the frequent and thorough inspection of premises by well-trained men.

One of the most prolific sources of production for the southern house mosquito (*Culex quinquefasciatus*) in a city or town is the storm-sewer catch basin, which is designed almost universally with a watertight debris trap below the level of the outlet. The larvae of *Aedes aegypti* also have been found in these places. In an anti-mosquito program the catch basins are usually oiled periodically with special equipment installed on trucks or motorcycles. Other important sources of mass production of *C. quinquefasciatus* are open cesspools, badly drained street gutters, and polluted ground pools, especially around city dumps or sewage outlets. Wherever possible these breeding places should be eliminated permanently by drainage, or the cesspools effectively covered; otherwise they require frequent treatments with larvicides.

Paris green will destroy *quinquefasciatus* larvae in ditches, shallow ground pools, and catch basins, although oil is usually preferred, as it deters oviposition. The pyrethrum-extract emulsion, mentioned under the general larvicides, has also been recommended for treatment of ground pools and sewage beds.

SALT-MARSH MOSQUITOES (PRINCIPALLY Aedes sollicitans and A. taeniorhynchus)

The salt-marsh mosquitoes fly extremely long distances. Migratory swarms have been observed 40 miles or more from their breeding places, although the average length of flight is, of course, much less. Because of their great flight range, local work against these species is of little benefit and control programs are usually undertaken on a county-wide basis. Investigations and control work against the salt-marsh species were begun in New Jersey more than 30 years ago, and New Jersey’s example has been followed by most of the North Atlantic States. On the South Atlantic and Gulf coasts, except in a few counties, no large-scale operations had been
attempted prior to 1933, when advantage was taken of the opportunity offered by the programs of the Federal Emergency Relief and the Civil Works Administrations (28, 37, 53, 73). Although this work was not long continued, many valuable experimental and survey data were obtained, which have been useful in a number of counties that have since become encouraged to provide funds for continuing the operations.

Mosquito-breeding conditions in salt marshes and the methods employed to overcome them are extremely varied. In general, the mosquitoes breed on the parts of the marsh that are not covered by daily tides, usually in pot holes and depressions of various sizes, but sometimes over extensive level areas. By the present control practices a system of ditches (pl. 4) is installed (1) to provide for a fairly rapid run-off of surface water following the occurrence of heavy rainfall or of high storm tides, (2) to permit free circulation of tidal water into low areas that are otherwise landlocked, and (3) to give larvae-eating minnows access to the pools and ponds or other places where the larvae accumulate as the surface water is drained off.

The ditches are usually laid out parallel, 100 to 300 feet apart, with cross-connecting ditches as needed. Various types of heavy machinery for digging and cleaning the ditches have been developed by the northern workers. Hand labor is also used extensively and special ditching spades are frequently employed. In New Jersey, where the marshes are generally well sodded, the standard ditch is 10 inches wide by about 20 inches deep, with the sides perpendicular. In other areas, especially in the South, the width, depth, and slope of the ditches have to be varied to meet other soil conditions and other types of marsh vegetation. Many, or perhaps most, of the southern marshes are not adapted to the use of machine ditchers, at least of the types so far developed.

Another important method of treating certain classes of marsh is the installation of dikes and tide gates. These prevent the entrance of high tides, and the tide gates, opening at low tide, provide for the run-off of rain water. Under special conditions the tide gates may be reversed to permit the entrance of high tides and to impound the water on the marsh. This is effective in reducing Aedes breeding, since it is the alternate drying and flooding of the marshes that brings about hatching of their eggs.

Recent experimental work by members of the Bureau of Entomology and Plant Quarantine in the vicinity of Savannah, Ga., has shown that the shutting off of the tides from marshes by means of dikes and tide gates so that the margins of the marshes become dry eliminates much breeding of the sand fly (Culicoides) as well as of the mosquito. It is probable that this practice can be combined with ditching in other sections where the sand fly is a serious problem.

In the southern half of Florida, where Aedes taeniorhynchus is the predominant salt-marsh mosquito, the marsh vegetation is dominated by growths of several species of mangrove. This presents special problems for the mosquito-control organization (pl. 4, B; fig. 8), as the mangrove forms dense forests through which it is necessary to cut rights-of-way 15 to 25 feet wide before ditches can be dug. Dynamite ditching has been employed in such marshes and compares favorably in cost with hand labor.
Another difficult problem is encountered in certain areas where the marshes border more or less landlocked bodies of water in which there is ordinarily little tidal range. Strong wind tides may cause a flooding of these marshes, and continuous winds may hold the water there long enough for a brood of mosquitoes to develop even though the marsh is thoroughly ditched. To meet this problem it has been proposed to dike such areas and remove the floodwaters when necessary by means of pumps. A program along this line, combining mosquito and sand fly control, was begun in Saint Lucie County, Fla., in 1936.

The control work against salt-marsh mosquitoes in the North Atlantic States has been criticized as unnecessarily destroying the feeding and breeding grounds of wildlife. It is believed that many of the deeper ponds, as well as the plant species that serve as food,

Figure 8.—Red mangrove (Rhizophora mangle) in a Florida salt marsh, showing the dense growth and characteristically divided base.

can be saved without detriment to the antimosquito work. In the case of ponds that are of value as feeding and resting grounds for wild fowl, the ditches may be diverted or, if they are run into the ponds, a sod dam or wooden spill gate may be inserted, somewhat lower than the marsh level, to prevent complete drainage of the pond and to permit the inflow of high tides. Deepening of the shallower ponds may be necessary to obtain surface drainage on the neighboring marsh and should greatly increase their value and permanence. Experiments are also under way in the digging of artificial ponds in ditched marshes.

Another problem arises in connection with the lowering of the water table, which results sometimes in an undesirable change in plant species and sometimes in a subsidence of the marsh level. As such changes vary greatly with different soil and tidal conditions, a thorough study of such factors should be included in the original surveys. Where the soil texture indicates little water-holding capac-
ity, excessive lowering of the water table may be avoided in some cases by the use of very shallow ditches.

Larvicides are employed in salt-marsh-mosquito control for the treatment of areas that are not taken care of by the ditching system. Fuel oils are used extensively for this purpose and are usually applied with a knapsack sprayer. It has been found that the heavier, less volatile oils are harmful to wild birds, fish, and other aquatic animals, and it is therefore recommended that only relatively volatile oils, such as No. 2 fuel oil, be used in treating mosquito breeding areas where wildlife is likely to be affected. The pyrethrum-extract emulsion as described on p. 21 is highly recommended where wildlife is concerned. Paris green has given promising results against salt-marsh Aedes larvae, and is more economical than oil in labor, material, and transportation costs, in addition to being much less disagreeable to handle. It is mixed with water and sprayed over the breeding area with a sprinkling can having a capacity of 3 or 4 gallons. Two gallons of water will cover about 1,250 square feet and should contain about 1 ounce of paris green for an application at the rate of 2 pounds per acre. For use in shallow water and with even distribution the amount of paris green can be reduced by at least one-half. The water used is dipped from the breeding place as needed. It should be strained, if necessary, to prevent clogging of the sprinkler head with trash.

NOTES ON THE GENERA AND SPECIES

The genera and species are discussed in the following pages. As few mosquitoes are known by common names, the scientific name will be used to designate the kind under discussion. During the early years of activity in mosquito studies, following the discovery of their disease-carrying habits, considerable confusion was caused by revisions of generic and specific names. Fortunately, these names have now become much more stabilized as a result of continued studies in various parts of the world. In the following account of the species the principal synonyms that have appeared in the United States literature are shown in parentheses under the valid name, and in a few cases the common name is also given.

Genus ANOPHELES Meigen

(Syn., Nyssorhynchus Blanch.)

The mosquitoes of this genus breed in a wide variety of aquatic environments, although their production on a large scale is chiefly in permanent bodies of water containing aquatic vegetation or surface debris. Descriptions of anopheline breeding places of various types, while not specifically referred to herein, are numerous in the literature cited in this publication. Some of the references dealing

9 In scientific terminology two names, the generic and the specific, are employed for each kind of organism. A genus is sometimes divided into subgenera and, when given, the subgeneric name is inserted in parentheses between the generic and specific names. The species may also be divided into subspecies or varieties. The name, spelled out or abbreviated, of the person who first described the species is often added after the specific name. If the species is changed to another genus, the name of the author is enclosed in parentheses. The designation of a species may therefore appear as Aedes aegypti or Aedes (Stegomyia) aegypti (L.), etc.
with the classification and types of breeding places in given localities are those of Bradley (23) for northeastern Louisiana, Barber and Komp (6) and Perez (107) for Mississippi, Boyd (14, 15) for northeastern North Carolina, Watson and Spain (120) for northern Alabama, Meleney, Bishop, and Roberts (100) for western Ten-

All our native anophelines are fresh-water breeders, with the ex-

ception of Anopheles atropos and one variety of A. crucians, which

The eggs (fig. 3, C) are laid singly—that is, not stuck together in rafts—and are provided with floats to keep them at the surface of the water. Hatching usually occurs in 2 or 3 days, and breeding is continuous during the summer months. Boyd (14) obtained records indicating that A. quadri-

maculatus may have 10 generations annually in the latitude of south-

western Georgia. In the warmer sections of the Gulf States breed-

ing is also more or less continuous through the winter (7, 50), although much reduced in volume, and the rate of de-

velopment is slower. The larvae of some species are able to with-

stand freezing temperature (1). The adults are active chiefly after
dusk and spend the daytime resting in dark, humid situations.

When alive, most anophelines can be recognized by their typical resting position (fig. 9, A, B), the abdomen and proboscis being held in nearly a straight line and pointed at an angle toward the resting
surface. Other kinds of mosquitoes hold the body more or less parallel to the resting surface (fig. 9, C), while the head and proboscis are bent downward at an angle to the body. The larvae of *Anopheles* are easily recognized by the absence of a breathing tube and by their usual feeding position (fig. 10, A) parallel to the water surface. Other mosquito larvae have an elongated breathing tube and while at the surface hang downward with only the tip of the tube penetrating the surface film (fig. 10, B). Anophelines have tufts of modified hairs, called palmate hairs, on the upper side of the abdominal segments, by which they suspend themselves just below and parallel to the surface. While they are in this position the head is rotated for feeding until the mouth parts are uppermost, and the food is taken from or near the surface film. In the pupal stage the breathing tubes are short and widely flared as compared with those of other mosquitoes (fig. 11). The wings of all the typically Nearctic species of *Anopheles*, including *A. maculipennis* Meig., which is not known to the Southeastern States, are shown in plate 5.

To this genus belong the mosquitoes that transmit malaria to human beings, and all the species listed for the Southeastern States have been proved susceptible to infection with the parasites of this disease. However, *Anopheles quadrimaculatus* is considered to be by far the most important species concerned in the transmission of the disease in this region. The others either are too rare or their blood-

![Figure 10](image-url)
feeding habits appear to be such that they are seldom of importance as carriers. These conclusions are based on the fact that malaria infection in this region has almost invariably been found associated with this species. *A. crucians* is prevalent along the coastal plains and in the lower Mississippi Valley, and since three specimens have been found infected in nature (95, 101), the species cannot be entirely eliminated from consideration. Barber and coworkers (9) have given a critical review of the records on infection of southern species and their role in malaria transmission.

Investigations several years ago in the Okefenokee swamp in southern Georgia (96) showed that malaria was absent in an area where *crucians* was prevalent and the only anopheline present. In Florida the malaria rate is high in the northwestern part of the State, where *A. quadrimaculatus* predominates, but low in the southern half of the State, where *crucians* is abundant and the predominating species. Such malarious foci as have been investigated in the southern part have shown locally favorable conditions for *quadrimaculatus* breeding. Frequently the two species are found associated in the breeding places, but in general the occurrence of *quadrimaculatus* and the areas of high malaria endemicity in northern Florida and southern Georgia (21) appear to be correlated with the presence of slightly alkaline surface waters, whereas *crucians* apparently prefers water of an acid reaction as found more generally in the southern part of Florida.

The species of *Anopheles* included here are divided into two subgenera, *albimanus* being placed in *Nyssorhynchus* and the others in the subgenus *Anopheles*.

ANOPHELES QUADRIMACULATUS Say

(Syn., *A. annulimanus* V. d. W.; the common malaria mosquito)

The common malaria mosquito breeds chiefly in permanent fresh-water pools, ponds, and swamps that contain aquatic vegetation or
floating debris (pls. 1–3). It is found throughout the South and is the principal species concerned with malaria transmission in this region. It is a fairly large mosquito, dark in color, with four darker spots near the center of the wing field (pl. 5, G). In its resting position the angle at which the body is held is not so pronounced as with some of the other species, and the position of specimens heavy with blood may not appear characteristic.

This species is active principally at night, although during the cooler months the females will seek blood meals in the daylight on warm days, in dwellings, or in the woods. The daily flight or dispersal period begins just at dusk and continues for a half hour or so. During the remainder of the night, flight is probably limited for the most part to local forays in search of a host. Another period of activity begins just at daylight and ends with a general shift to the daytime resting places. The flight range of *Anopheles quadrimaculatus* from the breeding places undoubtedly varies a good deal, probably depending largely upon the proximity of blood meals and the numbers produced. In planning control operations the maximum effective flight range is taken as about 1 mile under average conditions during the summer. Prehibernation dispersal flights in the fall may be much greater than this.

Although little is known of the extent to which this species feeds upon wild animals, man and most of the domestic animals are known to be attacked by the blood-hungry females. Information on the relative attractiveness of different hosts was obtained in a series of cage experiments conducted in Baltimore, Md. (32, 33). Two host species were exposed side by side to the bites of *Anopheles quadrimaculatus* females, which were afterwards collected and the blood meals identified by the precipitin test. Among cattle and horses it was found that the attractiveness varied more between individuals than between the species, and that a decided variation also occurred between individuals of the human race. The latter received on an average about one-sixth as many bites as the horse or cow. Sheep, goats, dogs, and pigs appeared to be less attractive, in the order given, while rabbits and chickens proved to be very poor hosts even in the absence of other animals.

To determine the proportion of mosquitoes that obtained blood meals from different hosts under natural conditions, a large series of records had previously been obtained at Mound, La., (79) by testing the blood from freshly fed females collected from the tenant dwellings and outbuildings on three plantations. From a general series of collections during the mosquito season of 1922, 38 percent of the specimens taken inside the house were found to have fed on man, and about 2 percent of those from underneath the house and in the outbuildings. The weighted average was 4.3 percent for the entire *quadrimaculatus* (female) population, being 6 to 8 percent when the average number of females per location was about 200 to 500 and decreasing to 3 percent or less when the average reached 1,500 or more. The average percentages for the other hosts for which blood tests were made were as follows: Cow, 36; horse, 33; pig, 16; dog, 8; and other animals (chicken and cat), 3.

Although very high malaria infection rates (10 percent or even more) have been found among anophelines in other countries, the percentage of infected *quadrimaculatus* in malarious areas in this
Wings of the typically Neartic species of Anopheles: A, canadensis; B, maculipennis; C, punctipennis; D, pseudopunctipennis; E, walkeri; F, atropos; G, quadrimaculatus; H, bacoeri.
country appears to be comparatively low, probably much lower than is generally supposed. From an examination of 9,340 specimens collected on plantations in the vicinity of Mound, La., in 1922 (71), only 10 were found to contain the sporozoite form of the parasite in the salivary glands and therefore to be capable of transmitting the infection at the time of capture. This gave a sporozoite rate of 0.107 percent, or approximately 1 infective specimen per 1,000. The annual malarial rate in humans on the same plantations during that year was about 45 cases per 100. At Edenton, N. C., (17) a gland-infection rate of 0.23 percent was obtained from dissections of 1,486 mosquitoes over a period of 3 years.

The larvae of Anopheles feed almost entirely at the water surface, and since they seem to make no selection of material provided it is small enough to be ingested, the food consists of the general variety of small organisms that are found at the water surface. From a large series of observations at Mound, where quadrimaculatus was the predominant anopheline, Bradley (27) reported that flagellates, diatoms, and the green algae made up a large proportion of the plankton content of the surface layer in the natural waters of that area. The approximate average numbers of organisms per cubic centimeter in breeding places having more than one larva per dip were as follows for the breeding seasons of 1928 and 1929, respectively: Total plankton, 8,600 and 6,300; flagellates, 5,400 and 4,200; diatoms, 1,800 and 500; green algae (other than flagellate forms), 700 and 900. Present in smaller numbers were the ciliates, blue-green algae, and amoeboid protozoa, although the first two were fairly abundant at times. The four principal genera among the flagellate forms were Euglena, Chlamydomonas, Trachelomonas, and Phacus, which composed about 75 percent of the total organisms in this class in the places of high larval densities. The report of studies made by Boyd and Foot (20) shows a similar plankton content in the surface waters at Edenton.

In rearing the larvae in the laboratory various foods may be utilized, both those from the natural breeding places and artificial foods such as yeast. Barber (2) found that Anopheles quadrimaculatus could be reared to maturity on cultures of single species of organisms, including algae, bacteria, or infusoria, and that dead organic material was less suitable than living organisms. Komp (85) reared Anopheles successfully in a food culture made from Spirogyra killed by heating. Boyd, Cain, and Mulrennan (19) report that the infusoria developing in a ripened hay infusion, when supplemented by yeast, forms an almost ideal food for the larvae, as it invariably produced large and healthy individuals. The ripening process requires at least 30 days in the summer, as the infusions must pass through a period of acid fermentation before they are satisfactory as a food supply. These authors found that the largest proportion of the larvae reached maturity at about 70° F. At this temperature development from egg to imago required about 21 days (18). At high summer temperatures, with an ample food supply, larval development under natural conditions may be completed in about 1 week, although some larvae develop more slowly than others under the same conditions. With a minimum of 3 or 4 days for the other aquatic stages (egg and pupa) and about 4 days for the preoviposition
period, the minimum time for a complete generation would be 14 or 15 days. At low temperatures or with scanty food supply the developmental cycle is greatly prolonged.

ANOPHELES CRUCIAN Wied.

There are two varieties of this species, one that breeds in fresh water and the other in brackish water (26). The adults of these varieties cannot be distinguished, but the larval differences are distinct. The species is often the predominating anopheline in low coastal-plain areas. Although both varieties are susceptible to infection with malaria parasites, neither is known to be of serious importance in the transmission of malaria; in fact, the evidence at present points to the contrary. It is not uncommon to be bitten by the species out of doors at night or even during the day in the woods. The adults also enter houses, but at Mound, La., they were always found in a much smaller proportion of the total numbers present than was the case with *Anopheles quadrimaculatus*. In the vicinity of Lake Apopka in central Florida, where crucians becomes extremely abundant, the number of specimens taken while attempting to bite has repeatedly been very small in comparison with the total numbers present as indicated by light-trap collections. Observations made by the senior author in New Orleans indicate that this species may migrate for several miles when an unusual production occurs. MacCreary and Stearns (89) obtained specimens at two lighthouses in Delaware Bay, one of the locations being 3.2 miles from the nearest shore, the other 5.5 miles.

The fresh-water variety of this species occurs throughout the Southeast.

Larvae of the salt-water variety have been obtained by the writers at Buras, La., Coden, Ala., Parris Island, S. C., and various places on the Florida coasts. This variety has also been reported from Grand Bayou (68) and Saint Bernard Parish, La. (37). Breeding places having only a low concentration of salt (about 1.5 percent or less) appear to be preferred by the larvae.

The principal recognition characters for the female of this anopheline are the three dark spots on the anal vein and the dark-scaled front margin of the wing (pl. 5, A). The palpi are ringed with white.

ANOPHELES PUNCTIPENNIS (Say)

(Syn., Culex hymenalis (Fitch), Anopheles perplectoris Lucl.)

Anopheles punctipennis ranges from the Atlantic to the Pacific coast and has a variety of breeding places. In the South it appears to prefer the margins of flowing streams, probably because of the lower temperature of the water. Throughout the southern range it occurs much more commonly late in the fall and early in the spring than in the summer (6, 15). At Mound, where it was never abundant, it disappeared almost entirely during the warm months. In that vicinity pure cultures of the larvae were sometimes taken in the fall in small clay borrow pits or pools free of vegetation. As a rule the species is rare in central and southern Florida. The writers

Since this manuscript was submitted for publication, specimens of a third variety of this species, differing in larval characters from the other two and taken in fresh-water breeding places in Georgia, have been received from R. C. Bellamy.
have found the adults in some numbers at Rock Springs, Orange County, near a natural spring having a good flow of clear, cool water, and have taken the larvae in a few other places in Orange and Seminole Counties. Larvae and adults have been taken in the vicinity of Gainesville, the larvae occurring there in a seepage outcrop.

Although this species readily becomes infected with malaria parasites under experimental conditions, it does not feed extensively on persons under natural conditions, and the epidemiological evidence indicates that it is not an important carrier of the disease.

The conspicuous white spot on the costa, about two-thirds the distance from the wing base (pl. 5, C), is the chief recognition character for this species. The palpi are unbanded. In specimens from central Florida the size of the costal spot is usually reduced considerably, and in some individuals the wing may be almost entirely dark-scaled. This variation has also been observed occasionally in other areas and is possibly the form described as A. perplexens (Mount Gretna, Pa.). Larval specimens from Florida usually have single, instead of double, antepalmate hairs.

ANOPHELES PSEUDOPUNCTIPENNIS Theob.

(*Syn., A. franciscanus* McC.)

Anopheles pseudopunctipennis occurs in the Southwestern States and in tropical America. It has been recorded by Dyar from Tennessee, and the writers have two records for Louisiana (Mound, February 1914, D. L. Van Dine; and New Orleans, December 1917, W. V. King). In general appearance it resembles *A. punctipennis*, but the palpi are ringed and the wing pattern (pl. 5, D) is different.

ANOPHELES ATROPOS D. and K.

Little is known of the habits of this species, which breeds in the salt water of coastal marshes. In southern Louisiana and Mississippi adult females have been taken while biting in the open during the day, even in direct sunlight (11, 51, 58). In Florida the adults were encountered on one occasion (December 1937) during the day on an open marsh near New Smyrma. They were found in large numbers after dark on Lostmans River, on the extreme southwestern coast of the State (March 1936), and at Sebastian Inlet on the eastern coast (May 1937). A few adults have been taken in light traps on the Atlantic coast in southern Florida, and larvae have been obtained at various places in the State and at Parris Island, S. C. The species has been recorded as far north as Maryland.

Larvae were taken by Griffitts (51) in water ranging from 3 to 12 percent "salinity" (about 0.8 to 3.4 percent salt), by Hinman (58) in water containing 0.8 and 1.85 percent salt, and by the writers, in Florida, in water with a salt content ranging from about 0.40 to 3.50 percent. The largest numbers taken by the writers have been in water containing more than 1 percent of salt. Although the larvae of *atropos* and the coastal variety of *crucians* have occasionally been taken together, the latter has usually been found in water of a lower salt content.

Anopheles atropos has been infected experimentally with malaria parasites (97), but it is of doubtful importance as a transmitter of the disease.
This species is unusually black, with few markings. The palpi are faintly spotted with white scales or entirely dark. The dark spots on the wings are inconspicuous or lacking (pl. 5, E), and the legs are without distinct white knee spots at the tips of the femora, which are usually visible in \textit{walkeri} and \textit{quadrimaculatus}. Examination for the knee spots is best made against a dark background, the specimen being viewed in different positions. Light reflections from the bristles or scales should not be confused with pale scaling.

\textbf{ANOPHELES WALKERI Theob.}

This usually rare species breeds in fresh-water marshes containing aquatic vegetation. It has been taken in light traps in fairly large numbers at Zellwood, in the vicinity of Lake Apopka, Orange County, Fla., (31) and at Reelfoot Lake, Tenn. (70). Females, taken while biting, and larvae have been collected in several places in Orange County, Fla., including Orlando, and adults have also been obtained in small numbers from light-trap collections on both the east and west coasts. A few larval specimens were sent the writers from Sumter County, Ga., in 1937 by R. E. Bellamy. The species has previously been recorded in the South from Crowley, La., (8, 84) and Scott and Little Rock, Ark. (68, 114). The specimens listed by Dyar (40) from Terrebonne, La., were probably \textit{Anopheles atropos}.

A study of the Florida specimens has shown some distinct differences in larval characters from those of specimens obtained in New York State (29). Matheson and Hurlbut (94) have since reported that both forms occur in the vicinity of Ithaca, N. Y. Specimens from each State have been infected experimentally with malaria parasites (81, 93) but are not known to be transmitters under natural conditions.

The females of this species from Florida are very dark. They usually have narrow but distinct white rings on the palpi and white knee spots at the tips of the femora. The wing spots (pl. 5, E) are less pronounced than in \textit{quadrimaculatus}.

\textbf{ANOPHELES BARBERI Coq.}

The larvae of this mosquito are found principally in tree holes. It is a small species and is rarely encountered. It has been proved susceptible to infection with malaria parasites, but is of doubtful importance in malaria transmission (113). The species has been recorded from various places throughout the South and East. The writers have taken it in tree holes, and also on one occasion in wooden tubs, at Mound, La. P. T. Riherd has sent the writers a larval specimen from Gainesville, Fla. (1937), and M. F. Boyd (personal communication) has taken it in the vicinity of Tallahassee, Fla. Shields and Miles (111) record it from Colbert County, Ala., and the writers have specimens taken in the same locality. The wing of the adult is shown in plate 5, H.

\textbf{ANOPHELES ALBIMANUS Wied.}

(Syn., \textit{A. albipes} Theob.)

This species is the only anopheline included here in which the tarsi are white-banded. It is a tropical species, of much importance as a vector of malaria in tropical America. It was introduced into Key
West, Fla., in 1904, and apparently developed one brood there, according to the records of its discoverer, George N. MacDonell. Fortunately it did not become established and has not since been reported from that locality. At the present time the only place in the United States where it is known to occur is the lower Rio Grande Valley, Tex. The distribution of this species and the possibilities of its becoming established in southern Florida and along the Gulf coast have been discussed recently by King (74).

Genus CULEX Linnaeus

(Syn., in part, Melanoconion Theob., Mochlostyras D. and K., Neoculex Dyar, Choeroporpa Dyar)

The mosquitoes of this genus breed in more or less permanent collections of water. The eggs are laid on the surface of the water in rafts of a hundred or more (fig. 3, A), and they hatch within 2 or 3 days at summer temperatures. Breeding is continuous during warm weather and even through the winter in the warmer parts of Florida and the Gulf Coast. Elsewhere the winter is passed in hibernation as adult females.

In identifying some of their collections of *Culex*, particularly those taken in light traps, the writers have found it convenient to use subgeneric names, since the specimens frequently are in poor condition or difficult otherwise to identify as to species. For the small species of *Culex* Dyar’s subgeneric name *Mochlostyras* has been employed previously, but Edwards (43) has reclassified them on larval characters that place two of the three local species in *Melanoconion*. Since the differences are of a minor nature and it is difficult to define the two subgenera by either classification, the writers are of the opinion that only the earlier name *Melanoconion* need be retained. The 10 southeastern species of *Culex* may then be placed in three subgenera as follows: (Culex) *quinquefasciatus, restuans, salinarius, nigripalpus, tarsalis, and corniger*; (Neoculex) *apicalis*; (Melanoconion) *erraticus, peccator*, and *pilosus*.

Adult specimens of *Melanoconion* are of less than medium size and are distinguished superficially from the other subgenera by the wider wing scales (more noticeably on the branches of vein 2) and by the presence of flat, dusky, or pale scales on the occiput. In *erraticus* the latter character is often obscure, and the examination should be made at fairly high magnifications and with good lighting. These scales should not be confused with the patch of broad white scales at the side of the head, which is present in the other subgenera as well.

CULEX QUINQUEFASCIATUS Say

(Syn., C. fatigans Wied., C. pungens Wied., etc.; the southern house mosquito, or house Culex)

The southern house mosquito breeds in water barrels and other artificial containers, in street gutters and catch basins, and also in ground pools if the water is polluted. It is one of the domestic mosquitoes and is generally the most abundant night-biting house mosquito in the cities and towns of the Southern States. In the North it is replaced by its very near relative *Culex pipiens*, and the range of the two overlaps in Virginia, northeastern Tennessee, North Carolina, and other intermediate States. The name *fatigans* has
been retained for this species by the European workers and is in use in most of the Old World countries. Methods employed in the abatement of the domestic mosquitoes are discussed under Mosquito Control (p. 14).

Females are distinguished from those of other southern Culex, in which the proboscis and tarsi are unmarked, by the conspicuous white abdominal bands, rounded on the posterior borders and interrupted or much narrowed at the lateral margins. The mesonotum is grayish, with narrow lanceolate scales.

CULEX PIPIENS L.

(The northern house mosquito)

This is the common house mosquito throughout the Northern States. The species was not previously known to occur south of Virginia, but the writers have recently identified it from material collected at Careyville, Tenn. (S. E. Shields, 1936), and from Smithfield, N. C. (D. F. Ashton, 1937). According to Alan Stone (personal communication), the United States National Museum has the species also from Lake Lure, N. C. It seems desirable, therefore, to include the species in the present list, although the region as originally selected was intended to be exclusive of its range. A reported occurrence of *pipiens* in New Orleans (12) is not given consideration, as the identification was undoubtedly incorrect.

The habits and general appearance of *Culex pipiens* are very similar to those of *C. quinquefasciatus*, and in areas where the two species overlap identifications should be made by examination of the male terminalia. Female specimens may be identified provisionally by the characters given in the key to species.

CULEX SALINARIUS Coq.

(Syn., *C. nigritulus* Smith (not Zett.))

The larvae are found principally in grassy pools of either fresh or brackish water, and sometimes also in the bilge water of boats, and in barrels. The species occurs throughout the Southeast. It is not abundant in peninsular Florida, although it becomes more numerous at Orlando during the winter. It is common elsewhere along the Gulf and Atlantic coasts and is found less abundantly inland. The adult females bite freely out of doors at night and will enter houses to feed if necessary.

Culex salinarius females are recognized by the presence of narrow bands or a few scattered scales of a yellowish or dingy-white color at the base of the abdominal segments. The seventh segment may be largely pale-scaled, and the posterior margins of the segments may appear whitish at times. The mesonotum is covered with fine, hairlike, brownish scales.

CULEX NIGRIPALPUS Theob.

(Syn., *C. similis* Theob.)

The larvae are common in ditches and grassy pools in central and southern Florida, where the species appears to have largely replaced its near relative *Culex salinarius*. At Orlando the larvae may nearly always be found during the summer in street catch basins.
and in tubs. Judging by the small number of biting records in comparison with the abundance of the larvae, the species is much less inclined to attack people than is salinarius. Where the adults are numerous they have occasionally been taken inside houses. The species is principally of tropical occurrence and apparently does not extend far north in the United States. It has been recorded once from Georgia (109), and the writers have two records for Louisiana (New Orleans, October 1913 and October 1914, W. V. King), and a specimen from Brewton, Ala.

The adults differ from those of salinarius in having lateral white spots but no pale bands on the dorsum of the abdomen. The pleurae generally have few or no white scales.

CULEX RESTUANS Theob.

(Syn., C. territans in some recent literature; the white-dotted Culex)

The larvae occur in pools and rain barrels, preferring somewhat foul water, especially that containing decaying grass or leaves. The adults are troublesome biters and become abundant locally in the South, much more so in the spring or the fall than in the summer. The species is of general distribution in the Eastern and Southern States but becomes rare in southern Florida. The adults usually have a pair, sometimes two pairs, of small white dots on the mesonotum (fig. 12, K). The abdomen has conspicuous white bands which are not narrowed at the lateral margins.

Unfortunately, the name *territans* was changed to designate this species after it had been applied for years to the one now known as *apicalis*. Edwards (43) has shown that the synonymy is very doubtful, and the writers agree with him in the desirability of restoring the name *restuans*, so that there will be no confusion as to the species meant.

CULEX APICALIS Adams

(Syn., C. territans Dyar (not Walk.) in part, C. testaceus Dyar (not V. d. W.), C. saxatilis Gros., etc.)

Culex apicalis has a wide distribution and is found breeding in grassy pools and swampy places containing aquatic vegetation. The larvae are fairly common, but the adults apparently do not bite man. As they have been observed feeding on frogs, they probably live on cold-blooded animals.

The adults are recognized by the presence of narrow white bands, which widen laterally, on the posterior margins of the abdominal segments. The name *apicalis* refers to this character.

CULEX TARSALIS Coq.

The writers have one collection of this banded-legged *Culex* from Louisiana (Mound, October 13, 1913, D. L. Van Dine). The larvae were taken in a clay borrow pit with *Anopheles punctipennis*, but were not obtained again, although many collections were made in the same locality during the following 10 or 15 years. It had been reported previously from Arkansas (68) and from Orleans Parish, La. (37). This species is very common in the Western States.
Figure 12.—Thoracic markings of several kinds of mosquitoes (diagrammatic): A, Aedes aegypti; B, A. infirmatus; C, A. atlanticus; D, A. thibaulti; E, A. trivittatus; F, A. triseriatus; G, Psorophora varipes; H, P. ciliata (at a scale one-half the size of the others); I, Orthopodomyia signifera; J, Uranotaenia sapphirina; K, Culex restuans.
THE MOSQUITOES OF THE SOUTHEASTERN STATES

CULEX CORNIGER Theob.

This is a tropical species that has been reported but once from southern Florida (Knights Key) (40).

CULEX ERRATICUS D. and K.

The name *erraticus* is adopted by the writers as the correct name for the common *Melanoconion* of the Southern States. This species has in recent years been known as *inhibitor* because of the synonymy published by Dyar (41, p. 317), but a review of the original descriptions has shown that the larval and male characters of the United States form are distinct from those of the Santo Dominican species (77). The description and illustration of the male genitalia given by Dyar (41, p. 300) for *erraticus* belong to *abominator* D. and K., a species that is known only from Texas.

The larvae of *Culex erraticus* are found in grassy permanent pools and swampy places, especially those having a growth of duckweed (*Lemna*). The egg raft is sometimes laid on the upper surface of the *Lemna* frond, although it is not known whether this is the usual habit. The larvae are taken frequently in association with *Anopheles* larvae. The species occurs throughout the South.

The United States species of the subgenus *Melanoconion* cannot at present be distinguished with certainty in the adult stage except by characters of the male terminalia. Since *erraticus* is the commonest one of the group, biting records for *Melanoconion* females are usually assumed to apply to this species. Female specimens having a limited area of flat scales and a large triangular patch of narrow scales on the occiput can be identified with some assurance as *erraticus*.

Melanoconion adults have been obtained in large numbers in light-trap collections in Florida, and examinations of male specimens have shown both *erraticus* and *pilosus*, principally the former, to be present. Females, probably all *erraticus*, have been taken in Florida and Louisiana while biting out of doors at night, but usually in small numbers when compared with the abundance of the larvae. The writers' observations at Mound indicated that the species had a preference for the blood of fowls, attacking them on the roosts at night. According to Thibault (114), *Culex abominator* (probably *erraticus* as now known) was the most abundant and annoying species in the woods in the vicinity of Scott, Ark., especially at dusk and early in the morning, but continuing to bite throughout the day. Horsfall (62, 63) did not find them of importance in southeastern Arkansas in 1935 or 1936, although he reported them as occurring in enormous numbers in rice fields in association with *Psorophora* species in 1936.

8 Larvae and reared adults of a species of *Culex* that has proved to be *Culex bahamensis* D. and K. have recently been received from F. W. Fisk from Key West, Fla. It is therefore probable that the species originally recorded as *C. corniger* was actually this species, as the adults of the two have similar markings. The larvae and male genitalia, however, are quite distinct.
Larvae and males of this species are distinguished readily from those of *Culex erraticus* and *C. pilosus*, although the male genitalia are very similar to those of *abominator* (Texas) and *anips* Dyar (California). Nothing is known of the blood-feeding habits of the female. The larvae, when found, are almost always associated with *C. apicalis*.

The writers have taken occasional specimens at New Orleans, Mandeville, and Mound, La., and in Orange and Osceola Counties, Fla. The species has been reported previously from all the South-eastern States except Florida, but records based on female specimens alone are questionable. The larval description for the species by Dyar and Barret (42) was based on specimens of *Culex erraticus*. The description was corrected by King and Bradley (77).

CULEX PILOSUS (D. and K.)

(Syn., *Mochlostyrax floridanus* D. and K., *Culex deceptor* D. and K., *C. agitator* D. and K., etc.)

This small mosquito breeds in shallow grassy pools, roadside ditches, hoofprints, and flooded areas. The eggs are able to withstand drying, a very unusual trait in the genus, and as a rule the breeding places are more or less temporary. The collected larvae are easily recognized by their peculiar wriggling motions and by their habit of lying on their backs on the bottom of the container. The tip of the air tube has a pair of recurved dorsal spines, which may be used for retaining their submerged position. Nothing is known of the feeding habits of the adult. The species is common in Florida. In addition to the States listed by Dyar (40), it has been recorded in Lee County, Ga. (109), Brewton, Ala. (83), and New Orleans, La. (E. S. Hathaway, personal communication).

Genus Aedes Meigen

With the exception of a few species, including the yellow-fever mosquito (*Aedes aegypti*) and the tree-hole breeder (*A. triseriatus*), this genus typically breeds in temporary rain pools, floodwaters, and tidal marshes. The eggs are laid singly on damp soil at the edge of a pool or in moist depressions, and they are able to survive long periods of drying. When such places are flooded with water and the temperature is favorable, some of the eggs hatch almost at once and often produce enormous broods of mosquitoes; others may not hatch until subsequent floodings. With some species at least, the eggs may also be deposited on the water surface, but most of them remain unhatched until the pool evaporates and has again been flooded. Some species of *Aedes* have but one brood each year and are to be found only in the spring, whereas others recur commonly during a rainy season. The winter is passed in the egg stage.

All except five of the species of *Aedes* included here are placed by Edwards (43) in the subgenus *Ochlerotatus*. The others are divided as follows: *(Aedes) cinereus; (Stegomyia) aegypti; (Aedimorphus) vexans; (Finlaya) triseriatus, atropalpus*. Dyar’s (41)
classification is similar except that the subgenus *Taeniorhynchus* (= *Culicella*) is also recognized by him to include the species *taeniorhynchus*, *sollicitans*, *mitcellae*, and *atropalpus*.

AEDES AEGYPTI (L.)

(Syn., *Stegomyia fasciatus* F., *Culex callopus* Meig., *C. argenteus* Poir., etc.; the yellow-fever or dengue-fever mosquito)

The adults are rather small and dark, with conspicuous rings of white scales on the tarsi, and patches of white on the sides of the thorax and abdomen. The lyre-shaped pattern on the mesonotum (fig. 12, A), formed of lines of white scales, is characteristic of the species.

This species is the most thoroughly domesticated of any of the mosquitoes and apparently greatly prefers the blood of man to that of other animals. It breeds almost exclusively in artificial water containers in the vicinity of dwellings or in the dwellings themselves. The larvae are found occasionally in tree holes and similar natural collections of water, but so far as known the eggs are never deposited in ground pools. The eggs are usually laid on the sides of the receptacle just above the water line, or on the surface of the water. It appears that places which are of solid material at the water line are selected for oviposition. In Orlando, Fla., the writers have found the larvae abundant at times in the underground street catch basins, which, although partly filled with sand and dirt, were lined with brick or concrete. Fairly clean water is preferred, and sewage-polluted water in wooden or concrete cesspools is not a favorable breeding medium. The eggs are able to withstand drying for long periods, and hatch very quickly when the receptacle is filled with water.

The adults are abundant during the summer in cities and towns throughout the South and are troublesome house pests. Biting is confined largely to the daylight hours, especially early in the morning and late in the afternoon, and the females seem able to gain entrance even into well-screened houses. They are wary biters and are especially annoying about the ankles. *Aedes aegypti* is thought to have been the only species involved in the epidemics of yellow and dengue fevers in the United States, although other species in other countries have been proved capable of transmitting both these diseases.

The adults have been kept alive in the laboratory for several months, and in the summer they probably live longer than any other of the southern species. They are very susceptible to cold, however, and are said to die out at temperatures below about 40° F. The eggs are more resistant, but the species probably does not overwinter in the United States except in the extreme southern part. Each summer it becomes widely dispersed into territory farther north, probably by carriage in trains, boats, etc. Although the adults are strong fliers, the usual flight range is considered to be not more than a few hundred feet.

The control of this species is discussed in the section on Mosquito Control (p. 24). A more extended account of its life history may be found in a bulletin by Howard (66).
AEDES SOLLICITANS (Walk.)

(The eastern salt-marsh mosquito, sometimes called the New Jersey mosquito)

This bronze, or golden-brown, species breeds in salt marshes along the Atlantic and Gulf coasts and, except in southern Florida, is by far the most important of the salt-marsh species. It is a strong flier and commonly migrates in large swarms for many miles from its breeding place. In Florida specimens sometimes are taken in the interior of the peninsula when broods emerge on the coast. The adults settle in the grass during the daytime and are extremely annoying to persons who come in their vicinity, attacking in full sunlight. The flight of migratory swarms begins just before dark, and the numbers that may be encountered in salt-marsh areas at this time are almost unbelievable. In the southern half of Florida the species may be found through the winter and is more prevalent in the spring and fall than in the summer. Adults have also been found in the winter along the Mississippi coast (52). Methods for the control of the salt-marsh species are discussed in the section on Mosquito Control (p. 25).

Adults of sollicitans are recognized by the longitudinal stripe of pale scales on the abdomen, the mixed black and white scaling of the wings, and the golden color of the mesonotum. The proboscis and the legs have wide white rings, and the first segment of the hind legs has a white ring in the middle.

AEDES TAENIORHYNCHUS (Wied.)

(Syn., Taeniorhynchus niger Gies (not Theob.); the black salt-marsh mosquito)

This small black and white mosquito is the most abundant and troublesome salt-marsh species along at least the southern two-thirds of the Florida coasts, which is also approximately the area where mangrove and pickleweed (saltwort) form the predominant marsh vegetation (pls. 4, B, and 6, A). In smaller numbers taeniorhynchus occurs along the Atlantic coast as far north as the New England States and along the Gulf coast to Mexico. Unlike sollicitans it is found on the Pacific coast in southern California. It breeds in the salt marshes when these are flooded by rains or tides and also prolifically in fresh-water pools nearby. In the laboratory the eggs have hatched and the larvae have been reared in water varying in salinity from completely fresh to that of sea water. The females become troublesome at times in the interior of the Florida Peninsula and have been taken in considerable numbers in the vicinity of Orlando, which is about 30 miles from salt water. Many larva were once found in water standing on a vacant lot within the city limits of Orlando, this being the writers’ only record of its breeding so far inland. The species seems much less inclined than sollicitans to attack in bright sunlight, but it commonly is very annoying in the shade in the mangrove and other woods.

The adults are less than medium sized and are dark in color, with white rings on the proboscis and tarsi (fig. 13). The mesonotum is dark-scaled sprinkled with white, and the wings are dark-scaled. The abdomen is without a longitudinal stripe, and the first hind-tarsal segment lacks the median white ring of sollicitans. Southern and tropical specimens having the tip of the last hind-tarsal segment dark are sometimes classified as variety niger. Specimens from the North Atlantic States usually have this segment entirely white.
A. A prolific breeding place of *Aedes taeniorhynchus* in a pickleweed marsh;
B. A breeding place of *Mansonia perturbans*, a large, shallow pond filled with pickerelweed.
AEDES MITCHELLAE (Dyar)

This comparatively rare species resembles Aedes sollicitans except that the wings are entirely dark-scaled and the first segment of the hind tarsi is not ringed with white. It breeds in rain-water pools away from the seacoast and is a vicious biter. It has been recorded from Alabama, Georgia, and Florida. The writers also have a number of records from various places in Florida and have collected the species in light traps at Orlando and at several points near the coast.

Figure 13.—Aedes taeniorhynchus, one of the salt-marsh mosquitoes.
AEDES TRISERIATUS (Say)
(The tree-hole Aedes)

This common woods species has patches of silvery-white scales on the sides of the thorax (fig. 12, F), which give it a rather conspicuous appearance. The proboscis and legs are unmarked. It breeds principally in tree holes but to some extent also in water barrels and other artificial water containers. It is widely distributed throughout the United States and undoubtedly occurs in all the Southeastern States. It is frequently a troublesome biter in the woods. When the larvae are found in water barrels associated with those of Aedes aegypti, they can usually be distinguished with the naked eye by their darker appearance.

AEDES VEXANS (Meig.)
(Syn., Culex sylvestris Theob., C. stimulans Coq. (not Walk.))

Aedes vexans is of wide occurrence throughout the United States and other countries and is a serious pest in many areas. It breeds in rain pools and floodwaters, and there may be several broods during the season. It is seldom abundant in the extreme South, and the writers have taken only occasional specimens in Florida. The adults have very narrow rings of white scales on the hind tarsi, and the white abdominal bands usually show a V-shaped notch in the middle of the posterior border. The proboscis and thorax are unmarked.

AEDES INFIRMATUS D. and K.
(Syn., Culicella confirmatus Dyar (not L-Arr.), in part)

This vicious biting mosquito breeds in temporary rain pools and at times becomes very abundant. The thorax has a wide, conspicuous central stripe of silvery scales (fig. 12, B), but the proboscis and tarsi are unmarked. In common with most of the other woods mosquitos, the females attack readily during the daytime in or near woods, and at night they may be encountered in the vicinity of dwellings. They seldom enter houses except when they become excessively abundant. The species has been recorded from Arkansas, Louisiana, Florida, North Carolina (40), and Georgia (109). The writers also have collection records from Louisiana, Florida, and Mississippi. It probably will be found in all the Southeastern States.

AEDES DUPREEI (Coq.)

This rare species breeds in temporary rain puddles. The larvae are seldom collected, owing to their habit of hiding among the leaves and trash at the bottom of pools. They are recognized by the extremely long anal gills. The adult females closely resemble those of Aedes atlanticus and A. tormentor, although they are somewhat smaller. The writers have taken them in Florida at Perry, Boyd, and Carbur and in Orange County, and in Louisiana at New Orleans and Mound. The species has previously been recorded from Baton Rouge, La., and Scott, Ark.

AEDES ATLANTICUS D. and K.
(Syn., Ochlerotatus serratus Coq. (not Theob.), in part)

Aedes atlanticus breeds in shady temporary rain pools. It is a vicious biter and is usually associated with A. infirmatus and other
woods species. It resembles *infirmatus* except that the white stripe on the thorax is much narrower (fig. 12, C). The species is of common occurrence in the Gulf States and is probably distributed throughout the southeastern region. In addition to the localities given by Dyar, it has been reported from Alabama (53) and Arkansas (63).

Aedes Tormentor D. and K.

(Syn., *Ochlerotatus serratus* Coq. (not Theob.), in part)

Aedes tormentor is almost identical in appearance with *A. atlanticus*, and its identification depends upon larval or male genitalic characters, which are given in the keys. The larvae are darker than those of *infirmatus*, with which it was usually taken in Louisiana. At New Orleans larvae of this species were more often taken than those of *atlanticus*, while the reverse was true in Florida. One larva of *tormentor* was collected on Parris Island, S. C., in 1935, and in this specimen the thorax and eighth abdominal segment were white, in striking contrast to the rest of the body. Florida specimens are sometimes rather conspicuously marked in a similar manner. The species was taken by Root (109) in Georgia, and it has now been recorded from all the Southeastern States except North Carolina and Tennessee.

Aedes Thibaulti D. and K.

This is a rare species that breeds in stump holes. It probably has but one brood each year, in the spring. The species is listed by Horsfall (62, 63) as of local importance in southeastern Arkansas. Specimens were taken by the writers at Mound, La. (24), and it has been reported from Alabama (110). It has not yet been recorded for Florida, Tennessee, North Carolina, or South Carolina.

Aedes Canadensis (Theob.)

This mosquito is rare in Florida and elsewhere in the extreme South, but farther north it is a troublesome biter. It is said to have but one brood annually, which appears in the spring. It is not known to enter houses. In addition to the localities listed by Dyar (40), the writers have specimens from New Orleans and Mound, La., Lumberton, Miss., and Orlando and Gainesville, Fla. It was taken by Dupree at Baton Rouge, La. It was reported by Horsfall (62, 63) to be the most annoying of the woods mosquitoes in Arkansas during March and April.

The following eight species of *Aedes* are all rain-pool or ground-pool breeders. They are of rare occurrence in the South, but some of them are common elsewhere.

Aedes Bimaculatus (Coq.)

(Syn., *A. fultus* Dyar (not Wied.), in part)

This is a bright-yellowish species of striking appearance, limited to the Southern States, and seldom collected. It was encountered in considerable numbers on one occasion (1914) in the vicinity of New Orleans, and the females were fierce biters. The writers have taken it in Orange and Seminole Counties, Fla. Root (109) obtained the species in Georgia, and it has now been recorded from all the South-
eastern States except South Carolina, Alabama, and Tennessee. Edwards (43) considers this species distinct from the tropical fulvus Wied., to which Dyar (41) assigned it.

Aedes stimulans (Walk.)
(Syn., variety mississippii Dyar, Culicada subcuntans Felt)

This is a northern forest species which has been recorded once from Mississippi (Electric Mills). These specimens were named *A. stimulans mississippii* by Dyar (39), but the variety was later placed as a synonym of the type form. *Ochlerotatus subcuntans*, reported from Baton Rouge, La., by Mitchell (102), was probably *Aedes vexans*.

Aedes Grossbecki D. and K.
(Syn., *Culex squamiger* Smith (not Coq.), *C. sylvicola* Gros.)

This is a rare northeastern species that has been recorded from two localities in Mississippi (Natchez and Scott). Dupree's (38) *Culex squamiger* and Mitchell's *Lepidoplatys sylvicola*, reported from Baton Rouge, La. (102), may have been this species.

Aedes sticticus (Meig.)
(Syn., *Culex pretans* Gros., *Aedes hirsuteron* (Theob.)

This species has been recorded from Georgia (109), Tennessee, and Arkansas (40), and the writers have one female from Tallahassee, Fla., which, although in poor condition, is evidently *Aedes sticticus*. *Ochlerotatus pretans*, reported from Baton Rouge, La., by Mitchell (102), may have been *sticticus*, or perhaps *thibaulti*. Edwards (43) places *hirsuteron* as a synonym of *sticticus*.

Aedes trivittatus (Coq.)

This is a northern species that has been recorded from Georgia (109) and Louisiana (41).

Aedes atropalpus (Coq.)

There is one record of this species for the Southeast, from North Carolina (41).6

Aedes cinereus Meig.
(Syn., *A. fuscus* O.-S., etc.)

This is a comparatively rare northern species that has been recorded from Arkansas, where it was said to be abundant but a non-biter (114). Dupree's identification of *Aedes fuscus* from Baton Rouge, La., may have been correct, although the species was not taken by the present writers at Mound or New Orleans. Specimens identified as *fuscus* by Beyer (10) and others in New Orleans were undoubtedly *Uranotaenia lowii*. A peculiar character of this species is that both the male and the female have short palpi.

Aedes nigromaculcis (Ludl.)

Aedes nigromaculcis belongs to the arid western regions, and its occurrence in Louisiana reported by Dyar (41, p. 216) is questionable if the identification was based on the distinguishing character as

6 Since the preparation of this manuscript, records have been obtained for Tennessee (S. E. Shields) and Arkansas (S. J. Carpenter).
given in his key to adults (J1, p. 146), i.e., "abdomen with side-spots and dorsal stripe concolorous," as this frequently is the case with A. sollicitans. Alan Stone (personal communication, 1937) stated, after examination of the specimen, that he believed it to be incorrectly determined.

AEDES DORSALIS (Meig.)

Aedes dorsalis was reported from Delta, La., by Howard, Dyar, and Knab (68), but the record is questionable, as the collection date was 1904 and the species has not been reported since from that locality. The specimen has now been lost. Beyer's identification (12) of the species from Lake Charles, La., needs confirmation. This species is abundant and widely distributed in the Western and Northwestern States, and is said to breed in either salt or fresh water.

Genus PSOROPHORA Robineau-Desvoidy

(Syn., Janthinosoma L.-Arr., Grabhamia Theob.)

To this genus belong some of our larger and showier mosquitoes. Most of them are severe biters, but at the present time none are known to carry disease, although one species (*Psorophora columbiae*) appears in such swarms in southern Florida as to cause the death of livestock by its mass attacks. The breeding habits of the group are similar to those of the typical *Aedes*, to which they are closely related. The eggs are adapted to withstand drying and may lie dormant on the ground for long periods. They hatch upon being flooded, and the larvae may complete their development in transient pools, as they develop very rapidly. The larvae of two of the species (subgenus *Psorophora*) are predacious upon other mosquito larvae and are therefore of some benefit to mankind. The females of these two species, the familiar gallinippers, offset the benefit to some extent, however, as they are themselves avid bloodsuckers.

The species of this genus are divided into three subgenera as follows: (*Psorophora*) ciliata and howardii; (*Grabhamia*) columbiae, discolor, pygmaea, and signipennis; (*Janthinosoma*) ferox, varipes, cyanescens, and horrida.

PSOROPHORA COLUMBIAE (D. and K.)

(Syn., Janthinosoma floridense D. and K., and *Culex jamaicensis* Dyar (not Theob.), In part; the Florida glades mosquito)*

The Florida glades mosquito breeds in temporary pools of rain water and occurs commonly throughout the Southeast. It is most abundant in the Florida Everglades, where it occasionally appears in enormous swarms and has caused large losses of livestock by its attacks (13). During these outbreaks it is almost impossible for humans to remain out of doors at night or in sheltered places during the day without some protection. Workers in sugarcane fields sometimes protect themselves by means of smudge pots, and large smudges are employed for the relief of stock. The problem in the Florida Everglades has not been thoroughly investigated, and the possibilities of control have not been determined, although breeding would appear to be too widespread to offer much encouragement to any efforts in this direction. The species also develops abundantly from grassy
swales and depressions in other parts of Florida. During 1936, when conditions were not generally favorable for the production of *Aedes taeniorhynchus*, *Psorophora columbiae* was the predominant species along both the east and west coasts in the southern half of the State.

The writers have observed the species in fairly large numbers in Louisiana, but it was seldom annoying there. Thibault (114) reported it as being annoying near its breeding places and troublesome to livestock in Arkansas. Horsfall (62, 63) found it developing in large numbers in rice fields in the same State. *Psorophora columbiae* adults are fairly large and dark, with the proboscis and tarsi conspicuously banded. The thorax and legs are speckled with white, and the femora have a narrow white ring near the apex. The abdomen has diffuse pale scaling, which tends to concentrate on the middle and posterior parts of the segments.

PSOROPHORA CILIATA (F.)

*(Syn., *P. oitites* Dyar; the shaggy-legged gallinipper)*

This is a very large, yellowish-black mosquito with heavily scaled legs and a median longitudinal stripe of yellow scales on the mesonotum (figs. 2, B, and 12, H). It breeds in temporary rain pools, and its larvae feed on those of other mosquitoes, especially *Psorophora columbiae*. It is a severe biter, is widely distributed in the South and East, and at times becomes fairly abundant. Notes on the breeding habits of this and the following species were published by Morgan and Dupree in 1903 (104).

PSOROPHORA HOWARDII *(Coq.)*

(Howard's gallinipper)

This large, bluish-black mosquito is commonly associated with *Psorophora ciliata* in the Southeastern States, but is usually less abundant. Its habits are similar to those of *ciliata*, and the larvae feed on those of other species or on each other. They have also been observed devouring small pollywogs. Dyar (40) recorded *P. howardii* from five of the Southeastern States, and it has since been reported from Georgia (109) and Louisiana (12). The writers have collected specimens in Louisiana and Florida.

PSOROPHORA FEROX *(Humb.)*

*(Syn., *Janthinosoma sayi* D. and K., *Culex posticatus* Wied., *C. musicus* Say, etc.; the white-footed woods mosquito)*

The white-footed woods mosquito is encountered frequently in forests and shady spots throughout the South and East and is a severe biter. The last two segments of the hind tarsi are white; the other tarsal segments and the proboscis are uniformly dark. The waving white tips of the hind feet make it easily recognized in the field even while on the wing. The larvae breed in temporary rain pools. They, too, are easily recognized (except from *Psorophora varipes*) by the unusual length of the antennae. The first notes on the life history of this species were published by Morgan in 1902 (103).

PSOROPHORA VARIPES *(Coq.)*

*(Syn., *P. discrucians* H., D., and K. (not Walk.), in part)*

This mosquito breeds in temporary rain pools and is a severe biter. The writers have collection records from McDavid, Ochlochonee, and
Matecumbe, Fla., Brunswick, Ga., and Mound, La. Horsfall (62) reported that it occurred in enormous swarms in southeastern Arkansas following the spring floods. It is known only from the Southern States and is usually rare. It has previously been recorded from Mississippi, Louisiana, and Arkansas. The species is similar in appearance to ferox, except that the white marking on the hind feet is limited to the fourth tarsal segment and the thoracic scaling (fig. 12, G) is somewhat different.

PSOROPHORA CYANEOSCENS (Coq.)

Psorophora cyanescens is recorded from Mississippi, Arkansas, Louisiana, Texas, and Kansas. It is usually rare in most of the South, but is reported as very abundant and annoying at times in Arkansas (114) and Alabama (S. E. Shields). The adults are similar to those of *ferox* except that the tarsi are entirely dark.

PSOROPHORA HORRIDA (D. and K.)

This is a rare species recorded from Arkansas, Tennessee, and Mississippi. Its reported occurrence at New Orleans (118) appears questionable. It is one of the four species of the subgenus *Janthinosoma* occurring in the United States. Matheson (92) has described unusual male genitalic characters for this species.

PSOROPHORA DISCOLOR (Coq.)

Psorophora discolor occurs sparingly throughout the South, but it has not yet been taken in Florida. The larvae have unusually large, S-shaped antennae and long anal gills. The adults have well-defined wing spots and are distinguished from *P. signipennis* by the characteristic distribution of these spots, as given in the key. The writers’ small series of specimens of this species are from Mound, La. (G. H. Bradley), Loyton, Tenn. (S. E. Shields), and Paducah, Ky. (G. E. Quinby). It has previously been recorded from Brewton, Ala. (82), Lee County, Ga. (109), Scott, Ark. (114), southeastern Arkansas (63), and from Charlotte, N. C., Clarksdale, Miss., and Baton Rouge, La. (40).\(^7\)

PSOROPHORA PYGMAEA (Theob.)

This tropical species has been recorded once from the Florida keys (Key West).

PSOROPHORA SIGNIPENNIS (Coq.)

Psorophora signipennis occurs in the arid western regions. It was reported from Arkansas by Dyar (41).

Genus MANSONIA Blanchard

(Syn., *Taeniorhynchus* L.—Arr., *Coquillettidia* Dyar)

The mosquitoes of this genus lay their eggs in rafts on marshes or lakes having certain kinds of aquatic vegetation. Upon hatching, the young larvae descend below the surface of the water and attach themselves by inserting the tip of the air tube into the stems and

\(^7\) Specimens of *Psorophora discolor* have recently been examined from Leon County, Fla. (B. V. Travis), Decatur, Ala. (M. V. King), and McComb, Miss. (T. T. Bracken)
roots of aquatic plants, through which they obtain air. The pupae also have breathing tubes specially modified for penetrating the soft tissues of the plant, to which they remain attached until ready to transform to the adult stage, when they rise to the surface.

Because of their habits, which are unique among mosquitoes, the larvae cannot be reached by ordinary surface larvicides such as oil. In experiments carried out by the writers in Florida, partial control has been obtained with common salt and with soap emulsions of pyrethrum extract in oil, but the results have been variable and the methods were not sufficiently economical to be feasible. In limited areas practical control can be obtained by destroying the host plants or by draining the ponds for a short period during the winter or early in the spring before the adults emerge.

As Mansonia larvae are often difficult to locate, the following notes are given on the methods found by the writers to be successful in collecting them (98). Since the larvae of M. perturbans have the habit of detaching themselves when their host plants are disturbed, they are likely to be missed if only the roots of such plants are examined. It is therefore necessary to search for the larvae in the bottom muck and trash of a pond area from which the host plants have been uprooted. This material may be scooped up with a large strainer and then examined in small quantities in shallow pans of clear water. As the larvae usually stay on the bottom of the pans, a careful search must be made. The white color of the larvae and their continuous movements aid in locating them among the trash. The collection of the larvae of M. titillans, which attach themselves to the roots of a floating plant (waterlettuce), is much simpler. These are readily taken by lifting the host plants quickly into a pan of water for examination, or the plants may be lifted from the water by bringing the dish up under them. Some larvae usually remain attached to the roots, while others are found moving about in the dish. Specimens of M. perturbans are also found at times on the same plant.

Mansonia adults have very broad wing scales, mixed brown and white, and the proboscis and tarsi are banded. The abdomen is blunt at the tip and lacks the longitudinal stripe of white scales found in Aedes sollicitans. The two species found in this region are placed in separate subgenera, titillans in subgenus Mansonia and perturbans in Coquillettidia.

MANSONIA PERTURBANS (Walk.)

This speckled brown and white mosquito is widely distributed in the Eastern and Southern States. The adults are strong fliers and severe biters, and in many localities become a serious pest. The eggs are laid on the surface of the water in rafts similar to those of Culex. Breeding takes place in marshes and lakes having a thick growth of aquatic vegetation, to the roots of which the larvae and pupae attach themselves. Larval development is extremely slow, and the winter is spent in this stage. The pupal period is also long for mosquitoes, lasting 5 or 6 days.

Throughout most of its range this species is believed to have only a single generation each year, a large proportion of the adults emerging over a comparatively short period late in the spring or early in the summer. In the vicinity of Lake Apopka in central Florida, adults are present from March to December, a peak of abundance oc-
currying in May or the last of April and a secondary peak the first part of August. Rearing experiments in artificial containers at Orlando have shown that, from eggs obtained in the spring, practically all the larvae will have reached the fourth stage and some adults may emerge in about 3 months, but the remainder of the larvae go through until the next year. It appears, therefore, that a partial second brood occurs in this area.

In northern localities larvae have been found associated with such plants as cattail (Typha), aquatic sedges (Carex), pickerelweed (Pontederia), etc. In Florida the principal host plant is the common pickerelweed (Pontederia cordata) (pl. 6, B). Larvae have also been collected, in varying numbers, from the following plants, which are named in the approximate order of importance: Cattail (Typha latifolia and the rarer T. angustifolia), frog’s-bit (Limnobium spongia), waterlettuce (Pistia stratiotes), arrowhead (Sagittaria lancifolia and S. montevidensis), spatterdock (Nymphaea macrophylla), and water-hyacinth (Piaropus crassipes) (99). Fortunately the water-hyacinth is not a favorable host plant. Otherwise the pest would undoubtedly be much more widely distributed and abundant in the extreme South, where the hyacinth covers large areas of lakes, bayous, and canals.

A method for collecting the larvae is mentioned in the preceding discussion of the genus Mansonia.

The females will bite readily during the daytime in shady, moist places, but the main flight takes place during the half hour just before and after dark. Following this dispersion they are more active in the early part of the night than later.

Mansonia titillans (Walk.)

This is a tropical species and is found in the United States only in southern Florida. It closely resembles Mansonia perturbans, and the two are found in the same breeding places. The eggs are laid on the under surface of the leaves of waterlettuce, and the larvae and pupae are found attached to the roots of this plant only. The adults may become fairly abundant and annoying locally. In 1933 larvae were taken in some numbers near the Saint Johns River at the latitude of Melbourne, but none could be found there the following year. Adults have been taken in light traps as far north as Cocoa on the coast, and several specimens have been collected in Orange County (latitude about 29°). This appears to be about the limit of its northern range, although its host plant occurs farther north.

Genus Theobaldia Neveu-Lemaire

(Syn., Culiseta Felt, Culicella Felt, Climacura H., D, and K.)

Most of the species of this genus have a northerly range, and only two occur in the South, these two being very diverse in appearance, and neither of them important as a pest or as a disease carrier. The eggs are laid in rafts, and both the larvae and the adults resemble Culex. Theobaldia inornata is placed in subgenus Theobaldia and melanura in subgenus Climacura.
THEOBALDIA INORNATA (Will.)
(Syn., Culex consabrinus How. (not R.-D.))

This is a rather large species, which breeds in open grassy pools and occasionally in artificial water receptacles. It is widely distributed throughout the United States. In the South the larvae and adults are encountered usually only during the cooler months. In New Orleans the larvae were sometimes found in abundance during the winter, but they disappeared completely from March to November, and the manner of passing the summer is unknown. The larvae were usually found associated with those of Culex restuans. In Florida the writers have taken the species at Zellwood and Palm Beach.

THEOBALDIA MELANURA (Coq.)

Theobalia melanura breeds in small permanent collections of water. It is rare and of sylvan habits but occurs over a wide range in the Southern and Eastern States. The writers have taken the species at Mound and New Orleans, La., Wilson Dam, Ala., and in several places in Orange County, Fla. It has now been recorded from all the Southern States except Mississippi and Tennessee.

Genus URANOTAENIA Lynch-Arribalzaga

The members of this genus are very small, and some are brilliantly colored. They are recognized as a group by the very short forks of wing vein 2. The palpi of both males and females are short, but the male antennae are plumose. The eggs are laid in irregularly shaped rafts on the surface of permanent bodies of water in which there is considerable plant growth. The larvae are commonly associated with anopheline larvae and, when viewed in the water from above, somewhat resemble the latter in the shape and dark color of the head and the position of the body. Three species are found in the United States, and two of them occur in the Southeast, neither of which is of economic importance. Hinman (61) has published some biological notes on these two species in southern Louisiana.

URANOTAENIA SAPPHIRINA (O.-S.)
(Syn., U. socialis Theob.)

This mosquito breeds in grassy pools, swamps, and vegetation at the margins of lakes. The adults are rarely seen on the wing but may be found resting in hollow trees and in the grass or around the bases of trees and stumps in swampy places. They are said to bite humans on occasion, but their biting has never been observed by any of the writers. The specific name comes from the median longitudinal line of brilliant blue scales on the mesonotum. The species is a common one and undoubtedly occurs throughout the South, although it has not yet been recorded from all the States.

URANOTAENIA LOWII Theob.
(Syn., U. continentalis D. and K.)

The larvae of this species occur in ground pools, chiefly the grassy margins of lakes. The adults are rarely seen and are not known to bite humans. The species has been recorded only from Florida and Louisiana. In southern Florida it appears to be the predominant
one of the two species. The last two segments of the hind tarsi are white, and the sides of the thorax have a few pale purplish scales.

Genus MEGARHINUS Robineau-Desvoidy

The mosquitoes of this genus are very large and brilliantly colored. The long, tapered proboscis is bent downward (fig. 2, A) at nearly a right angle and is not fitted for puncturing, the adults probably subsisting entirely on nectar, as they have been observed feeding in flowers. The eggs are laid singly on the surface of the water. The larvae breed in water in tree holes and occasionally in artificial receptacles. They are predacious on other mosquito larvae, principally Orthopodomyia signifera and Aedes triseriatus, as well as being cannibalistic, but owing to their rarity and their restricted habitat they cannot be of much benefit in controlling economic species.

Two closely related species are found in the United States distinguishable only by tarsal markings in the male.

MEGARHINUS SEPTENTRIONALIS D. and K.

(Syn., M. portoricensis How. (not Von Röder), M. herrickii Theob.)

The larvae of this large mosquito are found principally in water in tree holes, and occasionally in rock holes and artificial water receptacles, where they feed on other mosquito larvae. Several male specimens in the writers' collection from Mound, La., and Bay Saint Louis, Miss., all have the dark fore tarsi of this form. The species has been recorded from all the Southeastern States except Florida, South Carolina, and Alabama.

MEGARHINUS RUTILUS Coq.

This species also breeds in tree holes, but it is very rare and almost nothing is known of its habits. It is distinguished from septentri- onalis by minor characters of the males. It has been recorded from Florida and Georgia. Two males at hand from Savannah, Ga., (D. G. Hall, collector) and several males from Orlando, Fla., show the pale tarsal markings of this form. Single records from Alabama and Mississippi (46) are very questionable, since the identifications were made from female specimens.

Genus ORTHOPODOMYIA Theobald

(Syn., Bancroftia Lutz)

The mosquitoes of this genus breed in water in tree holes and occasionally in artificial water containers. The eggs are laid singly at the water's edge and hatch in 2 to 3 days. Two species are found in the Southern States.

ORTHOPODOMYIA SIGNIFERA (Coq.)

Orthopodomyia signifera is a medium-sized mottled black and white mosquito, which superficially resembles the yellow-fever mosquito. The mesonotum (fig. 12, I) has six or eight delicate longitudinal lines of white scales, all of which are nearly straight. The larvae breed in water in tree holes and rain barrels and are preyed upon by Megarhinus larvae. Thibault (114), in Arkansas, reported it as being abundant near the breeding places and as entering dwell-
ings to bite, an observation that the writers have not been able to
confirm. The species has been collected by the writers at Buras and
Mound, La., Bay Saint Louis, Miss., and various localities in Florida.
It has been reported in Alabama (111) and Louisiana (118), and all
other Southern States except Tennessee. Dyar (40; 41, p. 397) gives
the range of the species as the Southern States and the Eastern States
from Texas to Massachusetts.

ORTHOPODOMYIA ALBA Baker

Orthopodomyia alba was described in 1936 from specimens col-
lected in tree holes near Ithaca, N. Y., where they were found asso-
ciated with the larvae of O. signifera. Adults of the two species were
said to be very similar in appearance, but the larvae differed con-
siderably, particularly in the absence of sclerotic plates on the
abdomen in O. alba and in other characters as shown in the key. The
species was first recorded for the South by Shields and Miles (111),
who obtained it from a tree hole in Colbert County, Ala., and the
writers have examined a few larvae and reared adults from this
series. With a few minor exceptions, the larval characters agree
with those given in Baker’s description.

Genus DEINOCERITES Theobald

The mosquitoes of this genus breed exclusively in holes made by
certain species of crabs, and the adults rest in the upper part of the
crab holes. It is said that they will bite humans on occasion, but
they are rarely encountered and are of no economic importance.
Only one species occurs in Florida. The antennae are extremely
long, and the sides of the thorax have a shingled appearance. The
palpi are short, and the antennae are similar in both sexes.

DEINOCERITES CANCER Theob.

(Crab-hole mosquito)

The crab-hole mosquito breeds in holes made by land crabs in the
marl soil of the coastal marshes of southern Florida. The larvae of
Aedes taeniorynchus and occasionally Psorophora columbicae have
been found associated with those of Deinocerites cancer when the sur-
face water left on the marshes by rain or high tides had drained
away. The adults are seldom seen, but have been taken in light
traps at Miami and in several other localities as far north as New
Smyrna (latitude about 29°).

Genus WYEOMYIA Theobald

The species of this genus breed in water that collects in such plants
as the bromeliads (air plants). The eggs are laid singly on the leaf
surfaces and hatch when flooded by rain water that collects at the
leaf bases. The adults are small and are rarely seen except in forests
and shady places, where their host plants occur. The females of some
of these species bite readily, but their attacks are usually rare and
they are troublesome only where the host plants are abundant. Three
species occur in the United States, two of which are limited to southern
Florida. All these species have some white markings on the
tarsi, although they are usually faint in dead specimens and are easily
overlooked. The most obvious recognition character is the marking of the abdomen, in which the dark scales of the dorsum and the white scales of the venter meet at the side to form a straight line. The mesonotum lacks the dorsocentral bristles and is covered with broad, appressed scales instead of the narrow, semierect scales of Culex. They differ from all the other genera in having a tuft of bristles on the postnotum. The palpi are short in both sexes.

WYEOMYIA MITCHELLII (Theob.)

The larvae of this mosquito occur in water that collects at the base of the leaves of epiphytic Bromeliaceae. They occur throughout the year, provided their breeding places do not become dry. The females bite readily and are encountered occasionally in some abundance. They do not migrate far from their breeding places. The white markings on the feet are more noticeable when the insects are flying. When at rest the hind legs are turned up over the back with the feet pointing forward. The species is found in the United States only in southern Florida. Specimens have been taken as far north as Orange County (latitude about 28.5°).

WYEOMYIA VANDUZEEI D. and K.

The habits and distribution of this species are almost identical with those of *Wyeomyia mitchellii*. The adults of the two species are distinguished with difficulty.

WYEOMYIA SMITHII (Coq.)

(Pitcherplant mosquito)

This is a northeastern species that has been reported as far south as Theodore, Ala. It breeds exclusively in the pitcher plant (*Sarracenia purpurea*). The female is not known to bite.

SYNOPTIC TABLES FOR THE IDENTIFICATION OF THE MOSQUITOES OF THE SOUTHEAST

The accompanying tables have been prepared in the usual form of opposed couplets, but the principal keys are more detailed than usual, to provide in one place a fairly complete comparative description of each species. The most obvious characters are given in the first sentence of each couplet and are followed, in brackets, with others that help to define the species or group. These are used frequently in confirming a provisional identification, and should be of especial value to one just beginning a study of mosquito taxonomy. Many of them are of further use when the first characters mentioned cannot be employed owing to the loss of scales or appendages. When there is doubt as to which part of a couplet the specimen fits, it is the practice to follow out both divisions to find a later fit if possible.

As previously mentioned, a preliminary identification of the genus is not required in using the key to adults. In practical experience it is found that specific characters in the adult frequently are more easily recognized than generic characters, and in routine work most identifications are made without reference, for example, to the thoracic bristles, the genus being known by the recognition of the species. However, some of the genera, such as *Anopheles* and
Megarhinus, are recognizable on sight, and in the larval stage practically all the species fall naturally into the generic groupings, as may be noted in the larval key.

The external characters and the terminology of the parts employed in the descriptions of adult mosquitoes are shown in figures 14, 15, and 16.

In preparing to identify a mosquito specimen, a preliminary examination should be made at a comparatively low magnification, to note the more obvious markings of the tarsi, proboscis, thorax, etc. With experience the approximate position of the insect, frequently both genus and species, is recognized from this examination. In the Southern States, after the Anopheles are separated, nearly all the species having the legs unbanded and the mesonotum unmarked are Culex, Theobaldia, or Deinocerites. The species of banded-legged Culex are extremely rare in this area. In the species of all the other genera, except Psorophora cyanescens and Aedes cinereus, some of the tarsal segments are ringed with white, or the mesonotum has bicolored scaling in definite patterns.

Aedes and Psorophora females can nearly always be distinguished from those of other genera by the tapered end of the abdomen, as shown in figure 17. This is a very useful character to remember in working with the keys, but it has not been employed as the principal means of separating these genera because it is not always definite. (Particular care must be taken in examining specimens filled with blood or ova.) As shown in the generic key, Aedes and Psorophora are distinguished also from the other mosquitoes, except Mansonia titillans, by the presence of postspiracular bristles. The Psorophora are distinguished from Aedes by having spiracular bristles as well, although it is frequently very difficult to see them. In Psorophora, however, the dorsal or lateral pale scaling of the abdominal segments is apical or diffuse, whereas in Aedes it is generally basal or extends from the base. In Psorophora, subgenus Grabhamia, the
Figure 15.—A, Composite diagram of thorax of adult mosquito, showing the groups of pleural bristles: \textit{apn}, Anterior pronotal (prothoracic); \textit{ppn}, posterior pronotal (proepimeral); \textit{ppl}, propleural (prosternal); \textit{sp}, spiracular; \textit{psp}, post-spiracular; \textit{pa}, prealar; \textit{stp}, sternopleural; \textit{ume}, upper mesepimeral; \textit{lme}, lower mesepimeral. \textit{B}, Posterior portion of thorax from above.
femora and tibiae are speckled, and at least the hind femur has a narrow white ring near the apex. In subgenera Psorophora and Janthinosoma the mesonotum is partially or completely covered with broad, flat scales and some of the leg scales frequently are erect. The subgeneric divisions of Aedes are not easily defined on markings,

and these groupings have not been included. The subgenera of Culex have been referred to in the discussion of that genus.

Difficulties may arise from the separation of the species of Wyeomyia on the pale tarsal markings, as these are easily overlooked. The species are of extremely limited distribution, however, and are rarely collected. The positive means of identification of the genus is by the presence of postnotal bristles.

KEYS TO ADULTS

All the known southeastern species are included in the first key. Following this is a short key to the male terminalic characters of the dark-legged Culex and then a separate key giving a synopsis of generic characters.

In the species key the characters apply primarily to the female, unless the male is mentioned. Although the markings of the male are generally similar to those of the female and the males of most species can be identified by the characters given, some differences occur in the distribution of the pale scales. The white bands on the abdominal segments, for example, cannot be used satisfactorily in identifying
the males of the subgenus *Culex*. This key is preceded by a synopsis of the principal divisions.

Mosquitoes having long palpi in both sexes ------------------------------- Couplet 2

Genus *Anopheles*-- 2

Mosquitoes having a rigid proboscis, down-curved in outer half; very large,
iridescent species-- 10

Genus *Megarhinus*--- 10

Mosquitoes having the second marginal cell very short; very small species
having iridescent thoracic markings--- 12

Genus *Uranotaenia*-- 12

Mosquitoes without tarsal or mesonotal markings-------------------------- 14

Genus *Deinocerites*--- 14

Genus *Psorophora* (*P. cyaneascens*); *Aedes* (*A. cinereus*)--------- 16

Genus *Culex* (except *C. punctipennis* and *C. tarsalis*); *Theobaldia* 17

Mosquitoes with tarsal or mesonotal markings, or both-------------------- 25

Large species, with long, erect scales on femora and tibiae; the galli-
nippers-- 26

Genus *Psorophora* (*Psorophora*)-- 26

Bright yellow species--- 27

Genus *Aedes* (*A. bimaculatus*)-- 27

Species with both tarsi and proboscis ringed------------------------------- 29

Genus *Mansonia*-- 30

Genus *Culex* (*C. punctipennis* and *C. tarsalis*)---------------------- 33

Genus *Aedes* (*tamaiorhynchus* group)----------------------------------- 34

Genus *Psorophora* (*Grabhamia*)--- 36

Species with tarsal rings or bands but the proboscis not ringed---------- 39

Genus *Psorophora* (*Janthinosa*; part)---------------------------------- 40

Genus *Aedes* (*A. aegypti, A. vexans*, etc.)----------------------------- 44

Genus *Orthopodomyia*-- 46

Genus *Wyeomyia*-- 59

Species with tarsi and proboscis unbanded, but with thoracic markings... 52

Genus *Aedes* (*A. inquietus, A. triseriatus*, etc.)---------------------- 52

1. Female palpi as long as proboscis or nearly so (fig. 1, A). [Abdomen
not covered with flat scales; scutellum evenly rounded; wings usually
spotted; male palpi long, clubbed at tip (fig. 1, D).] Tribe *Anophelini*,
genus *Anophelles*-- 2

Female palpi much shorter than proboscis. [Abdomen covered with
flat scales; wings usually unspotted; male palpi not clubbed at tip].-- 3

2. Wings with areas of white scales-------------------------------------- 3

Wings entirely dark-scaled-- 6

3. Tarsi dark--- 4

Tarsi with conspicuous white rings. [Hind tarsi with segments 3 and
4 and the apical half of segments 2 and 5 white; a narrow white
ring at apex of segment 1; some of segments on other tarsi narrowly
ringed; wings well spotted with white.] A tropical species, reported
once from Key West. *Anopheles albimanus*------------------------------ 5

4. Costa with a white spot at the outer third (opposite tip of subcostal
vein); anal vein with one or two areas of dark scales-------------------- 5

Costa dark except at extreme tip of wing; anal vein with three dark
spots separated by white (two spots in male). [Apical segment of
palpi pale and segments 3 and 4 with narrow pale bands or a few
pale scales at the joints]. *Anopheles crucians*----------------------------- 5

5. Veins 3 and 5 entirely dark-scaled. [Subcosta and vein 1 dark opposite
base of vein 2; apical half and basal one-fourth of anal vein dark-
scaled; palpi dark; mesonotum with a wide median frosted stripe,
the sides dark.] Common in certain parts of the South
Anopheles punctipennis-- 5

Veins 3 and 5 with long pale areas centrally. [A white spot on subcosta
and vein 1 opposite base of vein 2; apical half of anal vein dark,
basal half white; apical palpal segment pale and a narrow ring
at base of fourth segment.] Has been taken occasionally in Louisiana
and Tennessee. *Anopheles pseudopunctipennis*-------------------------- 5

6. Wings with spots of dark scales, more or less distinct, or palpi with
rings of white scales; mesonotal bristles mostly short-------------------- 7

Mesonotal bristles very long, average length about one-half width of
mesonotum; wings unspotted; palpi and legs dark-scaled. A small,
rare tree-hole breeder. *Anopheles barbieri*------------------------------- 7
7. Wings with four distinct black spots; palpi dark; femora with very small spots of white at tips (knee spots). [Processes of ninth tergite of male stout, expanded at tip.] Prevalent throughout the South. *Anopheles quadrimaculatus*
Palpi ringed with white scales, or knee spots lacking; dark spots on wings usually indistinct; general appearance very dark. [Processes of ninth tergite of male long and pointed.]

8. Palpi narrowly but usually distinctly ringed at apex of each segment; knee spots present. [Phallosome (mesosome) of male with second pair of leaflets from apex more than half the length of first pair.] Breeds in fresh water._____________ 8
Anopheles walkeri
Knee spots usually absent; palpi with faint white rings on apical segments or entirely dark; wing spots indistinct or lacking. [Phallosome of male with the second pair of leaflets no more than half the length of first pair.] Breeds in salt water._____________ 8
Anopheles atropos

9. Proboscis normal, straight or only slightly curved, not tapered. [Scutellum trilobed and with separated tufts of setae.]________ 11
Very large iridescent species of striking appearance; proboscis rigid, the outer half tapered and sharply curved downward (fig. 2, A). [Female palpi one-half or two-thirds as long as proboscis; second marginal cell less than half as long as its petiole; scutellum evenly rounded and scaled.] Rare tree-hole breeders
Tribe Megarhinini, genus *Megarhinus* ________ 10

Figure 18.—Wing of *Uranotaenia*, showing relation of length of the second marginal cell (b) to its petiole (a); also the short anal vein (an).

10. Front tarsi of male entirely dark. [Mesonotum dark, with a median line and a border of white or yellowish scales; abdomen dark blue above, yellowish below; palpi and legs with iridescent blue reflections; female tarsi of front and middle legs with second, third, and part of fourth segments white; hind tarsi with fourth and most of fifth segments white; male with fourth segment of hind tarsi pale and second segment of middle tarsi pale on one side, or dark; front tarsi dark.] Occurs sparingly throughout the South
Megarhinus septentrionalis
Female very similar to above; male also similar except that second and part of third segments of front and middle tarsi are pale dorsally. Very rare, Florida and Georgia._____________ 11

11. Second marginal cell normal, as long as or longer than its petiole; mostly medium-sized or large species, or, if small, without lines of bluish scales on thorax._____________ 13
Second marginal cell less than half as long as its petiole (fig. 18); very small species with lines of bluish or purplish scales on thorax and on base of vein 5. [Anal vein short, ending before level of fork of vein 5; squamae bare; palpi short in both sexes.]________ 12
Genus Uranotaenia

12. Mesonotum with a narrow median longitudinal line of bright bluish scales (fig. 12, J); tarsi all dark. A common species
Uranotaenia sapphirina
Mesonotum dark above, with a short line of purple scales on lateral margin; patches of pale purplish scales on sides of thorax and on anterior pronotal lobes; apex of third and entire fourth and fifth hind-tarsal segments white. Common in Florida and southern Louisiana._____________ 13

13. Tarsi not ringed with white and mesonotum without distinct markings (except small white dots in *C. restuans*)._____________ 14
Tarsi with pale markings or mesonotum marked with bicolorous scaling in definite patterns (lines or patches)._____________ 25
14. Antennae normal, not longer than proboscis, first flagellar segment of about same length as succeeding ones. Antennae much longer than proboscis, with a very long first flagellar segment, equal in length to several of succeeding ones. Tip of abdomen somewhat appressed laterally, making height equal to width; sternopleural sulci almost completely covered (shingled) with dark appressed scales; mesonotum with hairlike scales; palpi and antennae similar in both sexes. The crab-hole mosquito, found in coastal areas of southern Florida. Deinocerites cancer

15. Tip of abdomen blunt (fig. 17, B), eighth segment visible, the cerci retracted or inconspicuous; mesonotum covered with narrow lanceolate scales or with hairlike scales (if very small species, covered with broad, dark, appressed scales, see last half of couplet 42). [Post-spiracular bristles absent.] Culex, Theobaldia. Tip of abdomen tapered (fig. 17, A), eighth segment usually retracted, the cerci exserted. [Postspiracular bristles present.]

16. Mesonotum with scattered broad, pale scales; abdominal segments with apical pale scaling. A bluish Psorophora (Janthinosoma), which lacks the white bands on the hind tarsi (see couplet 39) Psorophora cyanescens Mesonotal scales narrow, dark; abdomen usually with basalar segmental bands that widen laterally. [Palpi short in both sexes.] Rare in South. Aedes cicerens

17. Medium-sized or small species; wings and legs not speckled with white scales. [The two cross veins arising from vein 4 well separated.] A species with unusually broad, lightly scaled wings; costa and first vein, femur, and tibia sprinkled with white. [The two cross veins in center of wing (arising from vein 4) separated by less than the length of either one; dorsal surface of abdominal segments with diffused pale scaling basally and laterally; spiracular bristles present; base of subcostal vein on under side of wing with a row of long setae.] Rare in Florida but occasionally common elsewhere Theobaldia inornata

18. Dorsal abdominal white bands or lateral spots basal when present. Abdomen with narrow dorsal bands and (or) lateral spots of white scales on apical (posterior) margin of segments. Culex apicalis Abdomen dorsally with conspicuous segmental bands of white scales. [Seventh segment without pale scales posteriorly; occiput with narrow, curved scales; outstanding wing scales narrow.]

19. Abdomen unbanded dorsally or with narrow segmental bands (fairly broad bands of yellowish scales sometimes present in C. saltinarius). Abdominal bands continuous to lateral margin, posterior borders somewhat irregular but not evenly rounded; mesonotum usually with a pair (sometimes two pairs) of small dots of whitish scales near the middle (fig. 12, K); mesonotum vestiture mostly of fine, brownish, hairlike scales except on spots and around margins, where scales are pale or grayish and somewhat coarser; second marginal cell long, usually four or five times as long as its petiole. The white-dotted Culex; rare in southern Florida, but sometimes plentiful in other sections. Culex restuans

20. Abdominal bands with a rounded posterior border (usually most typical on segments 3 to 5) and the bands interrupted or much narrowed at lateral margin of segments; mesonotum without white dots; mesonotum vestiture of narrow, curved or lanceolate scales, pale brown or grayish and having a coarse appearance; second marginal cell usually two and a half to three times the length of its petiole. The southern house mosquito. Culex quinquefasciatus (In Culex pipiens, which may be encountered in the northern part of the region covered in this publication, the scales of the mesonotum are similar to those of quinquefasciatus but the abdominal bands and the length of the second marginal cell are similar to those of restuans. The differences in male characters are given in the appended key of Culex terminalia.)

21. Wings with all outstanding scales long and slender (fig. 19, A); occiput (top part of head back of eyes) without flat scales; mesonotum with very fine dark-brown hairlike scales. Medium-sized species. Culex pipiens, which may be encountered in the northern part of the region covered in this publication, the scales of the mesonotum are similar to those of quinquefasciatus but the abdominal bands and the length of the second marginal cell are similar to those of restuans. The differences in male characters are given in the appended key of Culex terminalia.)
Outstanding scales of wing, at least on branches of vein 2, slightly or distinctly broadened (fig. 19, B); occiput with some broad, flat scales (except in *Theobaldia melanura*).

22. Abdomen usually with a few yellowish or dingy white scales at base of some segments, or with narrow transverse bands; tips of segments sometimes slightly pale-scaled and seventh segment frequently entirely pale-scaled; three or four groups of white scales on side of thorax. Abundant in some sections of South and East *Culex salinarius*.

Abdomen dark-scaled above except for lateral white spots on some segments; scaling on pleurae somewhat variable but frequently entirely lacking or, if present, limited as a rule to less than a half dozen scales in any of the groups. Abundant in Florida, rare elsewhere.

Culex nigripalpus.

23. Occiput with broad dusky or pale appressed scales in front, sometimes limited to a narrow border along the eyes, but extending to or nearly to vertex; abdominal segments with or without narrow white bands. Small *Culex*, subgenus *Melanoconion*.

Occiput without flat scales. [Proboscis unusually long (longer than abdomen); wing scales dense and distinctly broadened; spiracular bristles and ventral setae at base of subcosta present as in *Theobaldia inornata* (lacking in all *Culex*).] A comparatively rare species, greatly resembling typical *Culex*.

Theobaldia melanura.

24. Occiput mostly covered with broad appressed scales, the narrow scales limited to a median line or a small triangular patch. [Tip of male abdomen much enlarged in *Culex peccator*.] *Culex pilosus*.

Culex peccator.

Occiput with a large median triangular area of narrow scales extending nearly to the vertex, the broad appressed scales often reduced to a narrow line bordering the eyes. [Mesonotal scaling often bronzy or golden.] *Culex erraticus*.

(Adults of the *Melanoconion* species cannot be identified with certainty except by characters of the male terminalia, which are shown in a separate table.)
25. (15) Not exceptionally large species; legs not markedly shaggy.-----
Very large species of striking appearance, the gallinippers (fig. 2, B); legs shaggy or with tufts of long, erect scales toward tips of femur and tibia. [Side of mesonotum with an area of broad white appressed scales, bordered by smooth nude areas; posterior pronotal lobe nude, or with very few scales or bristles.]

Psorophora (Psorophora) (fig. 2, B) 26

26. Legs, especially the hind pair, with long, erect scales; mesonotum with a median stripe of golden scales (fig. 12, H); tarsi with basal pale rings; proboscis ringed; general color yellowish.----Psorophora ciliata Legs much less shaggy, only tips of femora and hind tibiae with long, erect scales; mesonotum without a median stripe of golden scales; first two segments of hind tarsal usually with very narrow pale basal rings; proboscis not ringed; general color bluish.----Psorophora howardi

27. Mesonotum bright yellow (both scales and integument), with two prominent, shiny, black spots on posterior corners; costa and vein 1 yellow-scaled from base to tip of subcostal vein. [Proboscis, femora, and tibiae yellow, tipped with dark; first two tarsal segments largely yellow, apical segments darker.] A conspicuously yellow species; usually rare.--------------------Aedes bimaculatus

Not so marked--- 28

28. Proboscis and tarsi ringed with white-- 29

Proboscis not ringed with white--- 30

29. Wing scales very broad, mixed brown and white. [Abdomen blunt; femora, tibiae, and proboscis with mixed brown and white scaling.]

Genus Mansonia

30. Hind tibiae with a wide pale ring on apical half, and first segment of hind tarsi with a wide pale ring at middle; proboscis broadly ringed; postspiracular hairs absent. Locally prevalent in Southern and Eastern States.----------------------------------Mansonia perturbans

Tibia and first segment of hind tarsi unbanded or bands indistinct; pale ring on proboscis narrow; postspiracular hairs present. Southern Florida and Tropics.------------------------Mansonia titillans

31. Femora without white rings; abdominal tergites with basal pale bands or lateral spots, or a longitudinal pale stripe.---------------------------------- 32

Hind femora from a very narrow ring of white scales toward apex; abdominal segments pale-scaled apically, the pale scaling diffuse or extending forward at sides or centrally. [Legs and wings with mixed dark and pale scales, wings of some species also with spots of pale scales; spiracular and postspiracular bristles present; claws of females not toothed.]--------------------------Psorophora (Grabhamia)

32. Tarsal segments with basal and apical pale rings, at least on hind tarsi. [Female abdomen blunt; postspiracular hairs absent.] Banded-legged Culex

Culex segments without apical banding. [Abdomen tapered; postspiracular hairs present.]-------------------Aedes (taeniorynchus group)

33. Tarsal rings broad; femora and tibiae with a longitudinal line of white scales on outside; wings usually with a patch of white scales at base of costa. Taken very rarely in Louisiana and Arkansas, common in Western States.-------------------------------Culex tarsalis

Tarsal rings very narrow, apical banding limited to hind tarsi; femora and tibiae not lined with white; wing scales entirely dark. A tropical species that has been recorded once from the Florida keys.

Culex coroniger

34. Abdomen with a dorsal longitudinal stripe of yellowish scales (fig. 14); femora and tibiae speckled with white. [Mesonotum golden; proboscis and hind-tarsal segments broadly ringed; last hind-tarsal segment entirely white.]

Abdomen with transverse dorsal bands but without a longitudinal stripe; dark portions of femora not speckled; mesonotum with dark or brownish scales, sprinkled with silver posteriorly. [Proboscis and tarsi usually with rather narrow bands of white scales; first hind-tarsal segment not ringed in middle; tip of last hind-tarsal segment usually dark in southern specimens; wing scales narrow, entirely dark.] An important salt-marsh species, of somewhat less than the average size Aedes taeniorynchus
35. Wing scales brown and white mixed; first hind-tarsal segment with a pale ring in middle. Important salt-marsh species—*Aedes sollicitans* Wing scales entirely dark, first hind-tarsal segment without a central pale ring. A fresh-water breeder, usually known as *Aedes mitchelli* (*Aedes nigromaculis*, reported once from Louisiana, is similar to *sollicitans* except that the base of vein 1 and the outstanding scales on the basal half of vein 4 are largely white-scaled, whereas these veins are largely dark-scaled in *sollicitans*.)

36. First hind-tarsal segment ringed in middle or largely pale. — First hind-tarsal segment without a central ring. A West Indian species, recorded once from Florida (Key West). *Psorophora pyrgaeae*

37. Legs and wings black-scaled, speckled with white, but wings without well-defined areas of pale scales; first hind-tarsal segment dark, ringed with white in middle and at base; mesonotal scales dark, well sprinkled or frosted with white. A fairly large, blackish species, common in the Southern States.—*Psorophora columbiæ* Costa and veins with well-defined areas of pale scales; tibiae and first hind-tarsal segment largely pale-scaled, intermixed with dark and ringed with dark scales apically. —*Psorophora discolor*

Apical half of costa with two prominent dark spots separated by a longer pale spot; anal vein with pale scaling apically and basally, separated by a spot of dark scales at about apical third; pale fringe spots present opposite tips of all longitudinal veins. Recorded only from Arkansas in the Southeastern States.—*Psorophora signipennis*

39. (28) Tarsal pale scaling restricted to one or more of last three segments of hind tarsi. [Abdomen blue-black, the tergites with apical or lateral pale scaling; mesonotum with broad appressed pale scales, mixed with the dark scales or segregated at sides.] — *Psorophora* (*Janthinosoma*, except *P. cyanescens*)

Tarsi entirely dark or the pale scaling not restricted to apical segments of hind tarsi. [Dorsal segmental pale scaling of abdomen basal when present].

40. Last two segments of hind tarsi white. — Fourth segment of hind tarsi white, at least dorsally, the fifth segment dark. [Mesonotum dark in center, sides covered with broad white scales (fig. 12, G).] Usually rare. (Formerly known as *Psorophora discruciæntas*). — *Psorophora varipes*

41. Mesonotum covered with a mixture of brown and broad white scales. [Hind tibia and tarsus with erect scales; tarsal markings usually extending onto tip of segment 3.] Common woods species, the white-footed mosquito. (Formerly known as *Psorophora sayi*)

Psorophora fcor

Mesonotum dark centrally, the sides covered with broad yellowish-white scales. Rare. — *Psorophora horrida*

42. Medium-sized species; mesonotum with a vestiture of narrow-curved or hairlike scales. [Metanotum without setae; abdominal tergites with pale bands or lateral spots on the segments].

Very small species, mesonotum covered with broad, appressed, dark scales; some of midtarsal segments white for entire length on one side, but tarsal markings sometimes very indistinct; abdominal scales entirely dark dorsally and pale ventrally, the two colors meeting at side in a straight line. [Metanotum with a tuft of setae; dorso-central bristles of mesonotum absent; anterior pronotal lobes large, covered with flat scales; tip of abdomen blunt and more or less expanded; palpi short in both sexes]. — Genus Wyemyria
44. Mesonotum with delicate longitudinal lines of white or silvery scales—
Mesonotum without such lines.

45. Thorax with four silvery lines, the outer pair curved to form a lyre-shaped marking (fig. 12, A); outstanding wing scales narrow and dark. [Hind tarsi with wide contrasting basal white bands, last two segments largely white; front and middle tarsi with narrow basal bands or spots on first two segments, the others dark.] The yellow-fever mosquito.

Mesonotum with four long silvery lines, and four short lines posteriorly, not in shape of lyre (fig. 12, I); wing scales broad, mixed with white. [Hind tarsi with broad basal and apical bands; femora sprinkled with white; tibiae and proboscis with longitudinal lines of white scales; fourth segment of fore tarsi very short; wing with a white spot extending across the veins from the stem of vein 2 to 5.1, and base of anal vein white; spiracular and postspiracular bristles absent; posterior pronotum with two to five bristles.] Rare, tree-hole breeders.

Genus Orthopodomyia

46. Tergite of second abdominal segment with continuous black scaling apically; integument of segment 1 brownish.

Orthopodomyia signifera

Tergite of segment 2 almost entirely pale-scaled, extending to the apex in middle of segment; integument of segment 1 yellowish.

Orthopodomyia alba

47. Tarsal segments ringed only basally.

Hind-tarsal segments ringed basally and apically; last hind-tarsal segment entirely white.

48. Tarsi with very narrow basal bands, those on hind tarsi usually no wider than diameter of segment; basal abdominal pale bands with a V-shaped notch in middle of posterior margin on some segments; wing scales narrow, entirely dark. Rare in Florida, frequently abundant elsewhere. (Formerly known as A. sylvestris)

Aedes vesanus

Tarsal segments with broad basal bands; wing scales intermixed with white; mesonotum whitish on sides, with a median dark stripe.

49. Wing scales narrow. Recorded from Mississippi.

Aedes stimulans

Wing scales broad. Recorded from Mississippi.

Aedes grossbecki

50. Wing scales dark; abdomen dark-scaled dorsally, with basal bands or lateral pale spots.

Wing scales bicolor; abdominal segments almost entirely pale-scaled except for dark quadrato spots laterally; mesonotum pale, with a median dark stripe of variable width. Reported from Louisiana

Aedes dorsalis

51. Mesonotum golden brown, without a median longitudinal dark stripe. Occurring sparingly throughout the South.

Aedes canadensis

Mesonotum pale, with a well-defined median dark stripe. Recorded from North Carolina and northward.

Aedes atropalpus

52. (43) Mesonotum dark brown, with a median longitudinal silvery stripe. [Abdominal segments with lateral pale spots.]

53. Mesonotum without a median silvery stripe.

54. Median stripe extending full length of mesonotum, the pale area usually narrower (variable in A. dupreei) than the dark area on each side (fig. 12, C).

Median stripe ending just back of middle of mesonotum, the silvery area wider than the dark area on each side (fig. 12, B). [Claspette (harpago) of male terminalia with a flattened filament having one long and several shorter median, retrose spines.] Fairly common

Aedes infirmatus

54. Medium-sized species (wing about 3.5 mm); occiput with a large median area of pale lanceolate scales, bordered by broad, appressed, mostly dark scales.

55. Small species (wing about 2.5 mm); occiput with a narrow median line of pale, lanceolate scales, bordered by broad pale and dark scales. [Mesonotum of male with a very broad median stripe or entirely silvery-scaled; claspette of male terminalia with a slender stem and filament, the latter slightly longer than the stem and tapered to a sharp point; stem of claspette with a bristle inserted in a raised tubercle near base.]

Aedes dupreei
55. Two species that are difficult to separate except by male characters.

Male terminalia:
Stem of clasper long, greatly enlarged in middle, and densely hirsute; filament stout, much shorter than stem—*Aedes atlanticus*
Stem of clasper long and slender, slightly pilose; filament much shorter, with a short, pointed, slightly hooked tip—*Aedes tormentor*

56. Mesonotum with a prominent patch or stripe of pale scales on each side, dark centrally

Mesonotum with two broad submedian stripes of yellowish-white scales, dark centrally and along lateral edges (fig. 12, E). [Dark portions of femora not speckled with white; tibiae and first tarsal segments slightly pale on one side.] Usually rare in South

Aedes trivittatus

57. Tibiae and tarsi almost entirely dark-scaled; dark portions of femora not speckled with white; abdominal tergites with lateral pale spots

Tibiae and first segments of tarsi pale on one side for nearly their entire length; dark portions of femora speckled with white; abdominal segments sometimes with basal pale bands that widen laterally. [Mesonotum broadly pale-scaled for its full length on each side, the disk also with pale scales; posterior pronotum with lanceolate scales.] Rare in Southern States—*Aedes sticticus*

58. Posterior pronotum densely covered with broad, appressed, white scales; mesonotum with silvery-white scales along sides, the median area broadly dark-scaled (fig. 12, F). A common woods species, breeding in tree holes—*Aedes triseriatus*

59. (42) Hind legs without markings; segments 3 to 5 of midtarsis white on one side. The pitcherplant mosquito, rare—*Wyeomyia smithii*

Hind-tarsal segments with basal spots or streaks of white scales underneath; midtarsi as in *W. smithii*. Two species found in the United States only in southern Florida, breeding in the water in air plants (Bromeliaceae).

60. Anterior pronotal lobes silvery-scaled—*Wyeomyia vanduzeei*

These scales darker, with purplish reflections (difficult to distinguish from the preceding)—*Wyeomyia mitchelli*

KEY TO DARK-LEGGED SPECIES OF CULEX BY MALE TERMINALIA

1. Tenth sternites with an apical tuft of short bristles or spines; subapical lobe of sidepiece not divided—Subgenus *Culex*

2. Tenth sternites comb-shaped apically, with a row of short, stout teeth—*Culex*

3. Subapical lobe of sidepiece with eight appendages; base of tenth sternite produced laterally into a blunt point or a short, nearly straight arm

4. Subapical lobe with five or six appendages; base of tenth sternite produced into a long, stout, strongly curved arm

5. Ventral arm of mesosomal plate long, ribbonlike, curved sharply outward toward sidepiece at about the outer third and tapered to a point; dorsal arm slender, pointed, lying more or less parallel with the inner margin of the ventral arm and extending little if any beyond the curved shoulder of this arm—*Culex quinquefasciatus*

6. Ventral arm of mesosomal plate of same general shape as above but somewhat shorter; dorsal arm broader, semicylindrical in appearance, with a truncate, slightly upturned tip; this arm placed obliquely, usually extending to or toward tip of ventral arm—*Culex pipiens*

8 Illustrations of these structures have not been included, on the assumption of some familiarity with this specialized subject on the part of those using this key.
4. Mesosomal plate with two arms and with a median row or group of four to seven short, stout teeth.

Mesosomal plate without a median row of teeth, the processes consisting of a short lateral arm and a longer posterior arm, which has a small tooth near the base. (Subapical lobe of sidepiece with three rods, a leaf, and two setae) Culex restuans

5. Dorsal arm of mesosomal plate short, bent in middle at a right angle (thumblike), with a pointed tip; subapical lobe of sidepiece with three rods, a leaf, and two setae; spines of tenth sternite all sharp-pointed.

<Mesosomal plate with a stout, straight, dorsal arm from near base; lobe of sidepiece with only one seta after the leaf (apically); spines on one side of tuft of tenth sternite short and bluntly rounded>

Culex nigripalpus

6. Subapical lobe of sidepiece with distinct divisions; comb-shaped portion of tenth sternite bent inward nearly at right angles; mesosomal plate with a long, curved, basal arm, directed ventrally (basal hook)

Subgenus Melanoconion

Subapical lobe not distinctly divided; apex of tenth sternite less strongly curved; mesosomal plate without basal hook; outer end of mesosomal plate studded with small tubercles

Subgenus Neoculex. Culex apicalis

7. Basal division of subapical lobe of sidepiece divided into two subequal arms, each with a long, stout, capitulate filament at tip; stem of clasper comparatively slender.

Basal division of subapical lobe with one arm bearing a stout filament at tip and a second filament arising from a tubercle near the base; apical division of lobe with a very large, fan-shaped leaf; clasper greatly enlarged apically, the stem stout and constricted near middle; sidepiece subtergal; with a dense patch of fine hairs on inner surface.

Culex peccator

8. Apical swelling of clasper cap-shaped, tapering abruptly; lobe of sidepiece without an expanded leaflet; ninth tergite with a widened plate, the lobes projecting from its posterior corners as a pair of short arms.

Culex pilosus

Apical swelling of clasper moderate, gradually tapered; lobe of sidepiece with an expanded leaflet on the apical division; lobes of ninth tergite ovate, prominent, with numerous hairs.

Culex erraticus

KEY TO GENERA

1. Abdomen with a vestiture of fine hairs; female palpi as long as proboscis; male palpi long, clubbed at tip; scutellum rounded.

Tribe Anophelini, genus Anopheles

Abdomen covered with flat scales; female palpi much shorter than proboscis; male palpi long or short, not clubbed at tip.

2. Proboscis rigid, outer half tapered and strongly curved downward; scutellum evenly rounded and scaled.

Tribe Megarhinini, genus Megarhinus

Proboscis flexible, not bent downward; scutellum trilobed, with separated tufts of setae.

Tribe Culicini

3. Wings with second marginal cell less than half as long as its petiole.

Uranotaenia

Wings with second marginal cell at least as long as its petiole.

4. Postnotum with a tuft of setae; squamae without a fringe of hairs.

Wyomyia

Postnotum bare; squamae with a fringe of hairs.

5. Postspiracular bristles present; segment 7 of abdomen narrowed, segment 8 much narrowed and retractile.

Postspiracular bristles absent (except in Mansonia titillans, in which wing scales are very broad); segment 7 of abdomen not narrowed; segment 8 short but not retractile.

6. Spiracular bristles present; dorsal segmental pale scaling of abdomen usually apical; mesonotum with at least some broad appressed scales or (in subgenus Grahamia) with simple claws in female.

Psorophora

Spiracular bristles absent; dorsal abdominal pale scaling usually basal; scales of thorax narrow or only slightly broadened.

Aedes
KEY TO LARVAE (Fourth-Stage)

The genera are separated in couplets 1 to 9, and the species in the couplets that follow. Air-tube lengths, when mentioned in connection with the species, are given in multiples of the diameter of the base of the tube. Mounted larval skins become flattened by pressure of the cover glass, and allowance must be made for this in estimating the proportions of the tube. Variations may occur in the number of branches as given for certain hairs; that is, a normally double hair may occasionally be single or triple, or a single hair double. In examining flattened specimens care must be taken to distinguish between the upper and lower surfaces of the body. The terminology of the larval parts is shown in figures 20, 21, and 22.

Figure 20.—Larva of Culex quinquefasciatus with the parts named. (Howard, Dyar, and Knab)
1. Eighth abdominal segment with an elongate air tube (fig. 10, B); abdomen without palmate hairs

Air tube lacking (spiracles sessile); some abdominal segments with dorsal palmate hairs (figs. 10, A, and 22, B) Anopheles

2. Air tube of normal shape, cylindrical or fusiform

Distal half of air tube attenuated (fig. 23, B), with saw-toothed projections at tip adapted for piercing the roots of aquatic plants. Mansonia

3. Air tube of normal shape, cylindrical or fusiform

Distal half of air tube attenuated (fig. 23, B), with saw-toothed projections at tip adapted for piercing the roots of aquatic plants—Uranotaenia

4. Head hairs normal, slender, frequently multiple; head wider than long, rounded

Head elongate, elliptical; upper and lower head hairs single, stout, spinelike (fig. 25, A). [Eighth abdominal segment with a lateral plate having a row of teeth on its posterior margin; air tube with one pair of ventral brushes; anal segment ringed by plate.]—Uranotaenia

5. Head normal, without lateral pouches; anal gills four; air tube short and stout in most species

Mouth brushes

Figure 21.—Head of larva of Aedes vexans.

5. Air tube with several paired ventral hair tufts or single hairs, a row of hairs beyond pecten, or a pair of tufts at base (Culex, Theobaldia)

Air tube with a single pair of ventral hair tufts, more or less centrally placed (sometimes very small or obsolete in Psorophora; a second very small pair near apex in Deinocerites). [Antennae in most of the species of uniform shape, the hair tuft placed near middle.] (Psorophora, Aedes, Deinocerites)

6. Anal segment not completely ringed by plate, or, if ringed, tufts forming ventral brush posterior to plate (fig. 24, A and B); air tube not inflated

Anal segment completely ringed by sclerotic plate and plate pierced on midventral line by tufts of ventral brush (fig. 23, A); mouth brushes formed of stout prehensile hairs (subgenus Psorophora), or air tube large and swollen centrally (except in P. discolor), with few pecten spines. [Comb of few scales in a single row.]—Psorophora

7. Head normal, without lateral pouches; anal gills four; air tube short and stout in most species

Aedes
Figure 22.—Dorsal hairs of larva of Anopheles quadrimaculatus: A, Head and part of prothorax; B, abdominal segments 4 and 5. Head hairs: 1, Pre-clypeal; 2, inner clypeal; 3, outer clypeal; 4, postclypeal; 5–7, frontal; 8–9, inner and outer sutural (occipital); 10, terminal antennal; 11, antennal; 12, preantennal (basal); 13, subbasal; 14, orbital; mxp, maxillary palp. Prothorax: 1, Inner submedian; 2, middle submedian; 3, outer submedian; 4–7, lateral. Abdominal segment 4: 0, Anterior submedian; 1, palmate; 2, antepalmate; 3–5, sublateral; 6, lateral; tp, tergal plate. Segment 5: pl, enlarged palmate leaflet.
Head with a prominent triangular pouch on each side (fig. 25, B); only two, very short, anal gills; air tube about 4:1. [Lower head hairs single or double, much longer than upper head hairs; comb of eighth segment of many scales in a patch; tuft of air tube usually double or triple; anal segment with divided dorsal and ventral sclerotic plates.] Breeds in crab holes along coast of southern Florida. One species—

8. Eighth abdominal segment with comb scales; mouth brushes cliform.

9. Anal segment with usual median ventral brush, consisting of a close-set row of tufts; air tube with one pair of hair tufts, attached before middle, each with several long hairs. [Comb with one row of short scales and a second row of very long, pointed scales; antenna with a
tuft of about four long hairs, attached before middle; head hairs all multiple; lateral hairs on abdominal segments 3 to 6 long and single; air tube 3:4:1.] Tree-hole breeders. Orthopodomyia 21

Anal segment without a median ventral brush, but with a pair of ventrolateral tufts (fig. 24, C); air tube with scattered hairs or small tufts. [Comb scales in a single row; antenna with a single or double hair beyond middle.] Breed in water-holding plants. Wyeomyia 61

Figure 24. A, Posterior portion of abdomen of larva of Aedes vexans; B, anal segment of larva of Aedes mitchellae; C, same of Wyeomyia mitchelli.
Figure 25.—Portion of heads of various mosquito larvae: A, Uranotaenia sapphirina; B, Deinocerites cancer; C, Megarhinus septentrionalis; D, Psorophora ciliata. lp, lateral pouch; mb, mouth brush.
10. Abdomen with plumose lateral hairs on first three segments only; head with plumose frontal hairs._________________________ 11
Abdomen with plumose lateral hairs on first six segments; frontal head hairs single. [Palmate hairs well developed on segments 2 to 7.]_________________________ A. barberi

11. Outer clypeal hairs branched.___ 12
All clypeal hairs simple; postspiracular plate with a long tail posteriorly on each side. [Inner clypeal hairs well separated; functional palmate hairs on segments 3 to 7, the leaflets ending in long slender filaments.]_________________________ A. pseudopunctipennis

12. Outer clypeal hairs sparsely feathered or branched (5 to 10 short branches) on apical half. [Inner clypeal hairs forked or sparsely feathered at tip.]___ 13
Outer clypeal hairs thickly branched, the branching dichotomous.___ 14

13. Inner clypeal hairs closely approximated; lateral hairs on abdominal segments 4 and 5 branched, usually in threes; palmate hairs well developed only on segments 4 to 7, the leaflets with notched or serrated edges._________________________ A. atropos
Inner clypeal hairs widely separated (by about one-third the distance between the outer clypeal hairs); lateral hairs on segments 4 and 5 simple; palmate hairs developed on segments 1 to 7, sometimes a pair on the metathorax also; leaflets long and slender, with smooth margins._________________________ A. albimanus

14. Abdominal segments with but one conspicuous hair anterior to palmate hair; this hair (the antepalmate hair, or hair 2) usually single or double, but sometimes with three branches, on segments 4 and 5; hair 0 undeveloped or very much smaller than hair 2._________________________ 15
Abdominal segments with two conspicuous tufted hairs (hairs 2 and 0) anterior to palmate hair; these hairs usually approximately equal in size and with four to nine branches on segments 4 and 5. [Lateral hairs of segments 4 and 5 usually branched at about basal third; palmate hairs developed on segments 3 to 7.]_________________________ A. crucians (fresh water)

15. Basal tubercles of inner anterior clypeal hairs separated by at least the diameter of one of the tubercles._________________________ 16
Basal tubercles of inner anterior clypeal hairs separated by less than their diameter; occipital hairs usually with no more than five branches._________________________ 17

16. Palmate hairs of second abdominal segment usually well developed and never less pigmented, although smaller than succeeding hairs; occipital hairs with a long stem and usually 8 to 10 side branches. [Antepalmate hairs usually single; antennal hair tuft usually attached near middle, the hairs reaching base of apical spines or beyond.]_________________________ A. quadriraculatus
Palmate hairs of segment 2 rudimentary; occipital hairs with a short stem and usually three to five branches.________ A. crucians (salt water)
(Specimens of the salt-water variety in which the inner clypeal hairs are well separated; see also couplet 18.)

17. Inner anterior clypeal hairs simple (rarely forked toward tip); hair 1 of prothorax short, single or weakly branched at tip; palmate hairs rudimentary on segments 1 and 2._________________________ 18
Inner clypeal hairs with sparse, minute feathering toward tip; hair 1 of prothorax with three to five strong branches from near base. [Hair 0 on abdominal segments comparatively large, with three to seven branches; palmate hairs on segments 1 and 2 partially developed; antepalmate hairs on segments 4 and 5 usually single, sometimes double or triple.]_________________________ A. walkeri

18. Leaflets of palmate hairs on segments 3 and 7 slender, usually somewhat smaller than those on segments 4 to 6 and mostly with smooth margins. [Antepalmate hairs on segments 4 and 5 single or double; distance between clypeal hairs variable.]________ A. crucians (salt water)
Palmate hairs on segment 3 with broad leaflets, usually notched or serrated on outer half and about equal in size to those on segments 4 to 6. [Antepalmate hairs on segments 4 and 5 usually double (except specimens from central Florida, in which they are usually single).] \textit{A. punctipennis}

\textbf{URANOTAenia}

19. Upper lateral hair of abdominal segments 1 and 2 double. --- \textit{U. lowii}
Upper lateral hair of abdominal segments 1 and 2 triple (lower hair single in both species) \textit{U. sapphirina}

\textbf{Manson\textit{a}}

20. Anal segment with ventral tufts piercing the sclerotic ring; antenna with two long hairs from a notch beyond the tuft, extending to end of antenna; lateral spine of maxilla serrate. --- \textit{M. titillans}
Anal segment without ventral hair tufts piercing the sclerotic ring; antenna with two short hairs from a notch beyond tuft, extending less than halfway to tip; lateral spine of maxilla smooth

\textbf{Orthopodomiy\textit{a}}

21. Segments 7 and 8 of abdomen each with a large sclerotic plate (a much smaller one usually present also on segment 6). [Lateral hairs of abdominal segments 1 and 2 comparatively short, multiple; tuft of air tube with many branches; anal segment ringed by the plate, the lateral hair single.] \textit{O. signifera}

Abdominal segments without sclerotic plates. [Lateral hairs of segments 1 and 2 double or triple, long; tuft of air tube with three or four hairs; anal segment not completely ringed by the plate, the lateral hair double or triple.] \textit{O. alba}

\textbf{Culex; Theobald\textit{ia}}

22. Both upper and lower head hairs multiple, long. [Comb of many scales in a patch.] \textit{T. inornata}
Upper and lower head hairs not both multiple

23. Air tube with hair tufts or a few single hairs beyond pecten, none at base. --- \textit{Culex (Culex)}
Air tube with a pair of multiple hair tufts at base; pecten with a short row of strong teeth, followed by a row of long setae (fig. 23, \textit{C}); air tube stout, about 3:1

24. Antenna uniform in shape, the hair placed near middle
Antenna with the hair tuft placed in a constriction at outer third, the part beyond the tuft more slender

25. Antennal hair single; upper and lower head hairs triple; air tube about \(2\frac{1}{2}:1\), with four pairs of ventral tufts. --- \textit{C. corniger}
Antennal hair multiple; upper and lower head hairs with five or six branches; air tube about \(4:1\), with two or three pairs of long, single hairs irregularly placed and one pair of small, subapical tufts, usually triple

26. Air tube with four or five pairs of hair tufts beyond pecten, the subapical pair laterally out of line (fig. 20); hairs usually little, if any, longer than diameter of tube
Air tube with five pairs of long, feathered tufts, the proximal pair attached before end of pecten, none out of line. [Air tube about \(4:1\).] \textit{C. tarsalis}

27. Air tube long and slender, 7-8:1, sides nearly parallel; frontal head hairs usually with three or four branches
Air tube stouter, about \(4:1\), head hairs usually with five or more branches. --- \textit{C. quinquefasciatus}
(The larva of \textit{Culex pipiens}, which may be encountered in the northern part of the region covered in this publication, is similar to that of \textit{quinquefasciatus}. It differs usually in having the subdorsal hairs of abdominal segments 3 to 5 double instead of single, although these hairs are subject to variation in both species.)
23. Thorax with fine spicules (best observed toward sides); lateral hair of anal segment usually single; basal (or proximal) tufts of air tube usually double or long and single, occasionally triple.—*C. nigripalpus* Thorax glabrous; lateral hair of anal segment usually double, occasionally single; basal tufts of air tube usually with three or four branches, occasionally with two.—*C. salinarius* 31

29. Pecten spines fringed on one side nearly to tip; ventral tufts of air tube long (those nearest base about twice diameter of tube or more), multiple and finely feathered.—*Culex* (Melanoconion) 31

Pecten spines with one to four coarse side teeth; air tube with comparatively short tufts (little, if any, longer than diameter of tube).—*Air tube long, 8-7:1.* 30

30. Head hairs long, usually single, the lower pair or both pairs occasionally double; air tube slightly expanded toward tip, with four or five paired ventral tufts beyond pecten (none at base): comb a patch of scales, the single scale rounded and fringed apically; body finely pilose.—*C. apicalis*

Lower head hairs single, the upper ones shorter and multiple; air tube with a tuft of hairs at base and with a row of about 12 short, subequal tufts on midventral line; comb a single row of long barlike scales.—*T. melanura* 31

31. Air tube long and slender, 5-6:1, with four to six pairs of ventral hair tufts beyond pecten.—*Psorophora*

32. Lower head hairs single, upper ones shorter, double or triple; body sparsely spicular; comb with the scales in a patch, each scale rounded and fringed apically; air tube slightly flared at tip.—*C. pecator*

Lower head hairs long, single, upper ones short, multiple (four or more); body usually densely spicular-pilose; comb with one irregular or partially double row of scales, the individual scales long and pointed and fringed on basal half.—*C. erraticus* 31

PSOROPHORA

33. Mouth brushes formed of stout prehensile hairs (each hooked at tip and with a row of comblike teeth along the side) (fig. 25, D).—[Air-tube pecten with numerous teeth, which are prolonged into hairs; tuft of air tube a single long hair.] Very large predacious larvae.—*P. ciliata* 34

Mouth brushes normal, ciliform. [Pecten with a few strong, widely spaced teeth; tuft of air tube sometimes very small.] 35

34. Lateral hair of anal segment with three or four branches near base.

Lateral hair of anal segment single, or forked some distance from base; teeth of pecten somewhat stouter than in *P. ciliata*.—*P. howardi* 35

35. Antenna very large, inflated apically, two long bristles at outer third in addition to central hair tuft; air tube small with a paired tuft of very long hairs; head hairs single.—*P. discolor* 36

Antenna not inflated; air tube large, inflated, ventral tuft small or obsolete

36. Head hairs double or single

Both upper and lower head hairs multiple.—*P. columbiana* 37

37. Upper and lower head hairs double; antennae unusually long and prominent

Upper and lower head hairs single

38. Pecten with three or four long spines, each with one to four teeth on one side at base, sometimes with a small tooth on opposite side; tuft of air tube very small, placed laterally; comb with seven or eight scales in a curved row on a weak sclerotic plate, the upper scale smaller than the rest; single scale with a long apical spine and three to five much smaller ones on each side.—*P. ferox* 38
Pecten with four to six spines, each with a small tooth, subequal in size, on each side of the long central spine; tuft of air tube larger, placed in line with the pecten; comb of five scales. (From published descriptions, 68, 102) \(P. \) variipes

39. Spines at tip of air tube short and inconspicuous \(P. \) cyanescens

40. Pecten with four teeth \(P. \) signipennis

41. Pecten with six teeth \(P. \) pygmaea

(The larva of \(Psorophora \) horrida has not been described.)

AEDES

41. Upper head hairs multiple, lower ones double or multiple (fig. 21).

\[\text{Anal segment not completely ringed by the sclerotic plate; tuft of air tube beyond pecten.} \] \(A. \) vexans

42. Either the upper or the lower head hairs single (both pairs single except as shown under individual species) \(A. \) cinereus

43. Pecten with one to three distal teeth more widely spaced (fig. 24, A);

comb of few scales in a single irregular or partially double row \(A. \) progthebeeki

44. Pecten with evenly spaced teeth; comb scales in a triangular patch \(A. \) canadensis

45. Upper head hairs with three to five branches, lower ones usually with two or three; lateral abdominal hairs double or triple on segments 3 to 5 \(A. \) sticticus

46. Lower head hairs double \(A. \) nigromaculis

47. Lower head hairs with three or more branches \(A. \) pygmaea

48. Single comb scale with a long apical spine \(A. \) varipes

49. Single comb scale with lateral spines nearly as long as apical spine \(A. \) atropalpus

50. Pecten with outer teeth more widely spaced \(A. \) bimaculatus

51. Tuft of air tube within pecten; comb of many scales in a patch, single teeth with apical fringe of subequal spinules \(A. \) nigromaculis

52. Tuft of air tube beyond end of pecten; comb of about nine scales, each with a long apical spine. [Anal segment completely ringed by plate.] \(A. \) nigromaculis

53. Both head hairs single; lateral hairs multiple on segments 3 and 4; sclerotic plate on anal segment small, covering about half the segment; body glabrous \(A. \) pygmaea

54. Lower head hairs double; lateral hairs usually single on segments 3 to 5; anal segment completely ringed by plate; body spicular-pilose \(A. \) bimaculatus

55. Anal segment not completely ringed by the sclerotic plate. [Lateral hairs normally double or triple on segments 3 to 5.] \(A. \) nigromaculis

56. Antennal hair single (rarely forked); comb of few (8 to 15) scales in a single or partly double row \(A. \) aegypti

57. Antennal hair multiple; comb of many scales in a patch \(A. \) triseriatus

58. Single comb scale elongate, evenly fringed with short spinules (fig. 26, C); head hairs and preantennal hair single; tuft of air tube with three or more branches; lateral hair of anal segment single or double \(A. \) aegypti

59. Single comb scale elongate, evenly fringed with short spinules (fig. 26, D); lower head hair with two to four branches; preantennal and lateral hair of anal segment multiple; tuft of air tube usually single or double \(A. \) triseriatus
53. Upper head hair double; anal gills as long as the segment; single comb scale pointed, with an apical spine somewhat longer than others; body glabrous. A. stimulans
Head hairs usually single; anal gills very short, budlike; comb scale rounded, fringed apically with subequal spinules. A. dorsalis
54. Comb of few scales (less than 12) in a single row. [Single comb scale pointed, thornlike; lateral hairs usually single on segments 3 to 5; dorsal preapical spines on air tube small.] A. tormentor
Comb of many scales in a patch. A. dupreei
55. Tuft of air tube beyond the pecten. Tuft of air tube before end of pecten; anal gills about twice the length of segment. A. sollicitans
56. Anal gills very long with prominent tracheae; lower head hairs double or triple; antennal hair usually double. A. atlanticus
Anal gills no more than twice length of segment, one pair longer than the other; head hairs single; antennal hair multiple. A. triseriatus

Figure 26.—Enlarged comb scales of Aedes larvae: A, A. sollicitans; B, A. taeniorhynchus; C, A. aegypti; D, A. triseriatus.

57. Comb scale thorn-shaped, with a long apical spine and smaller lateral spinules (fig. 26, A); lateral abdominal hairs single or double. A. mitcellae
Comb scales rounded apically, with a fringe of subequal spinules, (fig. 26, B); lateral hairs on segments 3 to 5 with three or more branches. [Body distinctly pilose; air tube short, 2:1 or less, dorsal preapical spines nearly as long as pecten teeth; antennal hair small, usually double or triple.] A. taeniorhynchus
58. Dorsal preapical spines of air tube (fig. 24, A) as long as apical pecten tooth; lateral abdominal hairs double on segments 3 to 5; body glabrous or nearly so. A. informatus
These spines small, not more than half as long as apical pecten tooth; lateral hairs single on segments 3 to 5; anal gills longer than anal segment. A. aegypti
59. Air tube about 3:1; anal gills longer than segment, tapered to a blunt point. A. sollicitans
Air tube about 2:1; anal gills shorter than segment, budlike A. sollicitans

60. Apical spine of comb scale longer than lateral spinules by about half its length; body sparsely spicate; anal gills longer than the segment; pecten ends about at middle of air tube. A. trivittatus
Lateral spinules of comb scale nearly as long as apical spine; body glabrous; pecten extending beyond middle of air tube. (From published descriptions, 68, 112) A. trivittatus
61. Upper and lower head hairs single.-- 62
Upper head hairs multiple, lower ones double; ventrolateral tufts of anal segment of about 12 subequal hairs; air tube with numerous long, single, irregularly placed hairs, a few shorter double tufts apically.--------------------------------- W. mitchelli

62. Ventrolateral tufts of anal segment with three long hairs; air tube with all hairs single.------------------------------- W. smithii
Ventrolateral tufts of anal segment with one or two long and three or four shorter hairs; air tube with a row of six small single or double tufts dorsally, a large double or triple tuft below and two or three small single or double ones apically--------- W. vanduzeei

LITERATURE CITED

(1) Balfour, Marshall C.
1928. STUDIES ON THE BIONOMICS OF NORTH AMERICAN ANOPHELINES.
(2) Barber, M. A.
(3) ———
(4) ——— and Hayne, T. B.
(5) ——— and Hayne, T. B.
(6) ——— and Komp, W. H. W.
(7) ——— Komp, W. H. W., and Hayne, T. B.
(8) ——— Komp, W. H. W., and Hayne, T. B.
(9) ——— Komp, W. H. W., and Hayne, T. B.
(10) Beyer, Geo. E.
(11) ———
(12) ———
(13) Bishop, F. C.
(14) Boyd, Mark F.
199619—39—6
(15) **Boyd, Mark F.**

(16) ———

(17) ———

(18) and **Cain, Thomas L., Jr.**

(19) **Cain, T. L., Jr., and Mulrennan, J. A.**

(20) and **Foot, Helen.**

(21) and **Ponton, Gerald.**

(22) and **Weathersbee, Albert A.**

(23) **Bradley, G. H.**

(24) ———

(25) ———

(26) ———

(27) ———

(28) ———

(29) ———

(30) ———

(31) and **McNeel, T. E.**

(32) **Bull, Carroll G., and Reynolds, Bruce D.**

(33) ———

(42) ——— and Barret, Harvey P. 1918. DESCRIPTIONS OF HITHERTO UNKNOWN LARVAE OF CULEX (DIPTERA, CULICIDAE). Insecutor Insctitiae Menstruus 6: 119-120.

(44) Engineering News-Record Editors. 1936. MOSQUITO CONTROL ENGINEERING. 57 pp., illus. New York.

(45) Gater, B. A. R. 1934. AIDS TO THE IDENTIFICATION OF ANOPHELINE LARVAE IN MALAYA. 160 pp., illus. Singapore.

(53) Guyton, F. E. 1935. PEST MOSQUITO CONTROL IN ALABAMA UNDER C.W.A. Jour. Econ. Ent. 28: 786-790, illus.

THE MOSQUITOES OF THE SOUTHEASTERN STATES

(74) **King, W. V.**

(75) ——— and **Bradley, G. H.**

(76) ——— and **Bradley, G. H.**

(77) ——— and **McNeel, T. E.**

(78) **Bradley, G. H., and McNeel, T. E.**

(79) ——— and **Bull, Carroll G.**

(80) ——— and **McNeel, T. E.**

(81) **Kitchen, S. F., and Bradley, G. H.**

(82) **Komp, W. H. W.**

(86) **Kumm, Henry W.**

(87) **Le Prince, J. A. A., and Griffitts, T. H. D.**

(88) ——— and **Orenstein, A. J.**
1916. Mosquito control in Panama; the eradication of malaria and yellow fever in Cura and Panama. 335 pp., illus. New York and London.

(89) **MacCreary, Donald, and Stearns, L. A.**

(90) **Matheson, Robert.**

(93) ——— **Boyd, Mark F., and Stratman-Thomas, Warren K.**

(94) ——— and **Hurlbut, H. S.**

(110) **Shields, S. E., and Lackey, James B.** 1938. *Conditions affecting mosquito breeding, with special reference to aedes thibaulti dyar and knab (diptera, culicidae).* Jour. Econ. Ent. 31: 95-102, illus.

(112) **Smith, John B.** 1904. *Report of the new jersey state agricultural experiment station upon the mosquitoes occurring within the state, their habits, life history, etc.* 482 pp., illus. Trenton.

(116) Van Dine, D. L.

(117) Vannote, Robert L.

(118) Viosca, Percy, Jr.

(119) ———

(120) Watson, Robert B., and Spain, E. L., Jr.

(121) Williams, L. L., Jr., and Cook, S. S.

(122) ——— and Legare, A. E.
<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>punctipennis (Say.)</td>
<td>3, 34, 35, 39, 61, 77</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 49, 51, 66, 79</td>
</tr>
<tr>
<td>quadrinaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
<tr>
<td>pungens Wied., Culex</td>
<td>3, 4, 5, 55, 62, 73</td>
</tr>
<tr>
<td>pygmaea (Theob.)</td>
<td>3, 4, 30, 54, 62, 75</td>
</tr>
<tr>
<td>quadrimaculatus Say., Anopheles</td>
<td>3, 4, 6, 7, 8, 17, 28, 29, 30, 31, 32, 33, 34, 36, 62, 72, 76</td>
</tr>
<tr>
<td>quinquefasciatus Say., Culex</td>
<td>3, 4, 5, 17, 20, 24, 25, 31, 37, 38, 63, 68, 70, 77</td>
</tr>
<tr>
<td>restuans Theob., Culex</td>
<td>3, 4, 7, 37, 39, 40, 54, 62, 63, 69, 77</td>
</tr>
</tbody>
</table>
ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE
WHEN THIS PUBLICATION WAS LAST PRINTED

Secretary of Agriculture... HENRY A. WALLACE.
Under Secretary... M. L. WILSON.
Assistant Secretary.. HARRY L. BROWN.
Coordinator of Land Use Planning and Director of Information.
Director of Extension Work... C. W. WARBURTON.
Director of Finance... W. A. JUMP.
Director of Personnel... ROY F. HENDRICKSON.
Director of Research... JAMES T. JARDBINE.
Solicitor... MARTIN G. WHITE.
Agricultural Adjustment Administration.......................... H. R. TOLLEY, Administrator.
Bureau of Agricultural Economics.................................. A. G. BLACK, Chief.
Bureau of Agricultural Engineering............................... S. H. MCCORMY, Chief.
Bureau of Animal Industry.. JOHN R. MOHLER, Chief.
Bureau of Biological Survey....................................... IRA N. GABRIELSON, Chief.
Bureau of Chemistry and Soils..................................... HENRY G. KNIGHT, Chief.
Commodity Exchange Administration.............................. J. W. T. DUVEL, Chief.
Bureau of Dairy Industry... O. E. REED, Chief.
Bureau of Entomology and Plant Quarantine.................... LEE A. STRONG, Chief.
Office of Experiment Stations..................................... JAMES T. JARDBINE, Chief.
Farm Security Administration..................................... W. W. ALEXANDER, Administrator.
Food and Drug Administration..................................... WALTER G. CAMPBELL, Chief.
Forest Service.. FERDINAND A. SILCOX, Chief.
Bureau of Home Economics... LOUISE STANLEY, Chief.
Library... CLARIDEL R. BARNETT, Librarian.
Bureau of Plant Industry.. E. C. AUCHTER, Chief.
Bureau of Public Roads... THOMAS H. MACDONALD, Chief.
Soil Conservation Service... H. H. BENNETT, Chief.
Weather Bureau.. F. W. REICHELDERFER, Chief.

This publication is a contribution from

Bureau of Entomology and Plant Quarantine................. LEE A. STRONG, Chief.
Division of Insects Affecting Man and Animals.............. F. C. BISHOP, Principal Entomologist, in Charge.